Back
 OPJ  Vol.3 No.1 , March 2013
Light: Duality or Discontinuity?
Abstract: Based on the perturbation theory of quantum mechanics, we found that the time for a system to absorb a photon is the period of the light wave. This result gives us an exact definition of a photon, that is, a photon is just a single period of light wave. Furthermore, the detail analysis of the emission and absorption of the light wave in a system tells us that the light wave is not continuous as we believed before but discontinuous instead. Based on this result, we elucidate the origin of the particle-wave duality of the light/electromagnetic wave.
Cite this paper: W. Xu, "Light: Duality or Discontinuity?," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 98-101. doi: 10.4236/opj.2013.31016.
References

[1]   Y. Thomas, “Bakerian Lecture: Experiments and Calculations Relative to Physical Optics,” Philosophical Transactions of the Royal Society of London, Vol. 94, 1804, pp. 1-16.

[2]   A. Einstein, “Zur Theorie der Radiometerkrafte,” Zeit schrift Fuer Physik, Vol. 27, No. 1, 1924, pp. pp. 1-6.

[3]   A. Einstein, “Uebereinen die Erzeugung und Verwandlung des Lichtes Betreffenden Heuristischen Gesichtspunkt,” Annalen der Physik, Vol. 17, No. 6, 1905, pp. 132-148. doi:10.1002/andp.19053220607

[4]   R. L. Liboff, “Introductory Quantum Mechinacs,” Addison Wesley, San Francisco, 2003.

[5]   A. Y. Davydov, “Wave-Particle Duality in Classical Me chanics,” Journal of Physics: Conference Series, Vol. 361, No. 1, 2012, Article ID: 012029.

[6]   M. Drescher and F. Krausz, “Attosecond Physics: Facing the Wave-Particle Duality,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 38, No. 9, 2005, pp. s727-s740.

[7]   H.-Y. Liu, J.-H. Huang, J.-R. Gao, Z. M. Suhail and S.-Y. Zhu, “Relation between Wave-Particle Duality and Quantum Uncertainty,” Physical Review A, Vol. 85, No. 2, 2012, Article ID: 022106. doi:10.1103/PhysRevA.85.022106

[8]   M. J. Clerk, “A Dynamical Theory of the Electromagnetic Field,” Philosophical Transactions of the Royal Society of London, Vol. 155, 1865, pp. 459-512. doi:10.1098/rstl.1865.0008

 
 
Top