Back
 OPJ  Vol.3 No.1 , March 2013
Chalcogenide As2S3 Sidewall Bragg Gratings Integrated on LiNbO3 Substrate
Abstract: This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented. These integrated As2S3 sidewall gratings on LiNbO3 substrate provide an approach to the design of a wide range of integrated optical devices including switches, laser cavities, modulators, sensors and tunable filters.
Cite this paper: X. Wang, A. Jiang and C. Madsen, "Chalcogenide As2S3 Sidewall Bragg Gratings Integrated on LiNbO3 Substrate," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 78-87. doi: 10.4236/opj.2013.31013.
References

[1]   A. Melloni, M. Chinello and M. Martinelli, “All-Optical Switching In Phase-Shifted Fiber Bragg Grating,” IEEE Photonics Technology Letters, Vol. 12, No. 1, 2000, pp. 42-44. doi:10.1109/68.817464

[2]   L. Pierno, M. Dispenza, A. Secchi, A. Fiorello and V. Foglietti, “A Lithium Niobate Electro-Optic Tunable Bragg Filter Fabricated by Electron Beam Lithography,” Journal of Optics A: Pure and Applied Optics, Vol. 10, No. 6, 2008, Article ID: 064017. doi:10.1088/1464-4258/10/6/064017

[3]   B. K. Das, R. Richen and W. Sohler, “Integrated Optical Distributed Feedback Laser with Ti:Fe:Er:LiNbO3 Wave guide,” Applied Physics Letters, Vol. 82, No. 10, 2003, pp. 1515-1517. doi:10.1063/1.1559443

[4]   R. Kim, J. Zhang, O. Eknoyan, H. F. Taylor and T. L. Smitch, “Fabry-Perot Intensity Modulator with Integrated Bragg Reflectors in Ti:LiNbO3,” Electronics Letters, Vol. 41, 2005, pp. 1220-1222. doi:10.1049/el:20053038

[5]   J. H. Song, J. H. Lim, R. K. Kim, K. S. Lee, K.-Y. Kim, J. Cho, D. Han, S. Jung, Y. Oh and D.-H Jang, “Bragg Grating-Assisted WDM Filter for Integrated Optical Triplexer Transceivers,” IEEE Photonics Technology Letters, Vol. 17, No. 12, 2005, pp. 2607-2609. doi:10.1109/LPT.2005.859181

[6]   L. Zhu, Y. Huang, W. M. J. Green and A. Yariv, “Polymeric Multi-Channel Bandpass Filters in Phase-Shifted Bragg Waveguide Gratings by Direct Electron Beam Writing,” Optics Express, Vol. 12, No. 25, 2004, pp. 6372-6376. doi:10.1364/OPEX.12.006372

[7]   H.-C. Kim, K. Ikeda and Y. Fainman, “Tunable Transmission Resonant Filter and Modulator with Vertical Gratings,” Journal of Lightwave Technology, Vol. 25, No. 5, 2007, pp. 1147-1151. doi:10.1109/JLT.2007.893922

[8]   Y.-B. Cho, B.-K. Yang, J.-H. Lee and J.-B. Yoon, “Silicon Photonic Wire Filter Using Asymmetric Sidewall Long-Period Waveguide Grating in a Two-Mode Wave guide,” IEEE Photonics Technology Letters, Vol. 20, No. 7, 2008, pp. 520-522. doi:10.1109/LPT.2008.918895

[9]   H.-C. Kim, K. Ikeda and Y. Fainman, “Resonant Wave guide Device with Vertical Gratings,” Optics Letters, Vol. 32, No. 5, 2007, pp. 539-541. doi:10.1364/OL.32.000539

[10]   R. Millett, K. Hinzer, A. Benhsaien, T. J. Hall and H. Schriemer, “The Impact of Laterally Coupled Grating Microstructure on Effective Coupling Coefficients,” Nanotechnology, Vol. 21, No. 13, 2010, Article ID: 134015. doi:10.1088/0957-4484/21/13/134015

[11]   J. T. Hastings, M. H. Lim, J. G. Goodberlet and H. I. Smith, “Optical Waveguides with Apodized Sidewall Gratings via Spatial-Phase-Locked Electron-Beam Lithography,” Journal of Vacuum Science & Technology B, Vol. 20, No. 6, 2002, pp. 2753-2757. doi:10.1116/1.1521744

[12]   A. Lupu, K. Muhieddine, E. Cassan and J.-M. Lourtioz, “Dual Transmission Band Bragg Grating Assisted Asymmetric Directional Couplers,” Optics Express, Vol. 19, No. 2, 2011, pp. 1246-1259. doi:10.1364/OE.19.001246

[13]   P. Ma, Y. Fedoryshyn and H. Jachel, “Ultrafast All-Optical Switching Based on Cross Modulation Utilizing Intersubband Transitions in InGaAs/AlAs/AlAsSb Coupled Quantum Wells with DFB Grating Wave guides,” Optics Express, Vol. 19, No. 10, 2011, pp. 9461-9474. doi:10.1364/OE.19.009461

[14]   P. Prahbathan, V. M. Murukeshan, Z. Jing and P. V. Ramana, “Compact SOI Nanowire Refractive Index Sensor Using Phase Shifted Bragg Gratings,” Optics Express, Vol. 17, No. 17, 2009, pp. 15330-15341. doi:10.1364/OE.17.015330

[15]   A. M. Prokhorov, Y. S. Kuzminov and O. A. Khacha turyan, “Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics,” Cambridge International Science Publishing, Cambridge, 1997.

[16]   B.-E. Benkelfat, T. Ferriere, B. Wacogne and P. Mollier, “Technological Implementation of Bragg Gratings Reflectors in Ti:LiNbO3 Waveguides by Proton Exchange,” IEEE Photonics Technology Letters, Vol. 14, No. 10, 2002, pp. 1430-1432. doi:10.1109/LPT.2002.801106

[17]   C. Madsen, W. C. Tan, X. Xia, W. Snider and I. Zhou, “Hybrid Chalcogenide/Lithium Niobate Waveguides,” Conference on Novel Hybrid Integration, Frontiers in Optics (FiO) 2010/Laser Science (LS) XXVI, Rochester, 24-28 October 2010.

[18]   Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode and Luther-Davis, “Fabrication and Characterization of Low Loss Rib Chalcogenide Waveguides Made by Dry Etching,” Optics Express, Vol. 12, No. 21, 2004, pp. 5140 5145. doi:10.1364/OPEX.12.005140

[19]   X. Xia, Q. Chen, C. Tsay, C. B. Arnold and C. K. Madsen, “Low-Loss Chalcogenide Waveguides on Lithium Niobate for the Mid-Infrared,” Optics Letters, Vol. 35, No. 19, 2010, pp. 3228-3230. doi:10.1364/OL.35.003228

[20]   C. Madsen, M. Solmaz and R. Atkins, “High-Index-Con trast Chalcogenide Waveguides,” Proceedings of SPIE, Vol. 6897, 2008, Article ID: 689703. doi:10.1117/12.768583

[21]   M. E. Solmaz, D. B. Adams, S. Grover, W.-C. Tan, X. Xia, O. Eknoyan and C. K. Madsen, “Compact Bends for Achieving Higher Integration Densities for LiNbO3 Waveguides,” IEEE Photonics Technology Letters, Vol. 21, No. 9, 2009, pp. 557-559. doi:10.1109/LPT.2009.2014569

[22]   Y. Zhou, X. Xia, W. T. Snider, J. Kim, Q. Chen, W. C. Tan and C. K. Madsen, “Two-Stage Taper Enhanced Ul tra-High Q As2S3 Ring Resonator on LiNbO3,” IEEE Photonics Technology Letters, Vol. 23, 2011, pp. 1195-1197.

[23]   D. Lee, “Electromagnetic Principles of Integrated Op tics,” Jphn Wiley & Sons, New York, 1986, Chap. 8.

[24]   A. Yariv and A. P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th Edition, Oxford University Press, New York, 2007.

[25]   J. Hong and W. Huang, “Contra-Directional Coupling in Grating-Assisted Guided-Wave Devices,” Journal of Lightwave Technology, Vol. 10, No. 7, 1992, pp. 873-881. doi:10.1109/50.144907

[26]   U. Schlarb and K. Berzler, “A Generalized Sellmeier Equation for the Refractive Indices of Lithium Niobate,” Ferroelectrics, Vol. 156, No. 1, 1993, pp. 99-104. doi:10.1080/00150199408215934

[27]   C. Chaudhari, T. Suzuki and Y. Ohishi, “Design of Zero Chromatic Dispersion Chalcogenide As2S3 Glass Nanofibers,” Journal of Lightwave Technology, Vol. 27, No. 12, 2009, pp. 2095-2099. doi:10.1109/JLT.2008.2007223

[28]   P. Prabhathan, V. M. Murukeshan and Z. Jing, “Compact Resonant Bragg Grating Filters Using Submicron Silicon-on-Insulator (SOI) Waveguide for Optical Commu nication Network,” Proceedings of SPIE, Vol. 7847, 2010, Article ID: 74870.

[29]   L. Pierno, M. Dispenza, A. Secchi, A. Fiorello and V. Foglietti, “A Lithium Niobate Electro-Optic Tunable Bragg Filter Fabricated by Electron Beam Lithography,” Journal of Optics A: Pure and Applied Optics, Vol. 10, No. 6, 2008, Article ID: 064017. doi:10.1088/1464-4258/10/6/064017

[30]   I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro and C. C. Ziling, “Electro-Optic Effect in Proton Exchanged LiNbO3 and LiTaO3 Waveguides,” Journal of Lightwave Technology, Vol. 14, No. 3, 1996, pp. 403-409. doi:10.1109/50.485600

 
 
Top