[1] H. S. Nalwa, “Preface,” In: H.S. Nalwa, Ed., Handbook of Nanostructured Materials and Nanotechnology, Academic Press, London, 2000, pp. ix-xii. doi:10.1016/B978-012513760-7/50001-0
[2] K. Kita, K. Saito, A. Inoue and T. Matsumoto, “Mechanical Properties of Al Based Alloys Containing Quasi-Crystalline Phase as a Main Component,” Materials Science and Engineering: A, Vol. 226-228, 1997, pp. 1004-1007. doi:10.1016/S0921-5093(96)10836-4
[3] K. E. Gonsalves, S. P. Rangara and J. Wang, “Chemical Synthesis of nanostructured Metals, Metal Alloys, and Semiconductors,” In: H. S. Nalwa, Ed., Handbook of Nanostructured Materials and Nanotechnology, Academic Press, London, 2000, pp.1-56. doi:10.1016/B978-012513760-7/50004-6
[4] H. Gleiter, “Nanocrystalline Materials,” Progress in Materials Science, Vol. 33, No. 4, 1989, pp. 223-315. doi:10.1016/0079-6425(89)90001-7
[5] M. Umemoto, Z. G. Liu and K. Masuyama, “Nanostructured Fe-C Alloys Produced by Ball Milling,” Scripta Materials, Vol. 44, No. 8-9, 2001, pp.1741-1745. doi:10.1016/S1359-6462(01)00794-1
[6] I. G. Brodova, D. V. Bashlykov and A. B. Manukhin, “Formation of Nanostructure in Rapidly Solidified Al-Zr Alloy by Severe Plastic Deformation,” Scripta Materialia, Vol. 44, No. 8-9, 2001, pp.1761-1764. doi:10.1016/S1359-6462(01)00791-6
[7] P. G. Sanders, J. A. Eastman and J. R. Weertman, “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,” Acta Materialia, Vol. 45, No. 10, 1997, pp. 4019-4025. doi:10.1016/S1359-6454(97)00092-X
[8] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Progress in Materials Science, Vol. 33, No. 2, 2000, pp. 103-189. doi:10.1016/S0079-6425(99)00007-9
[9] J. S. Hayes, R. Keyte and P. B. Prangnell, “Effect of Grain Size on the behavior of a Submicron Grained Al-3-wt%Mg Alloy Produced by Severe Deformation,” Materials Science and Technology, Vol. 16, No. 11-12, 2000, pp. 1259-1263. doi:10.1179/026708300101507479
[10] Y. Saito, H. Utsunomiya, H. Suzuki and T. Sakai, “Improvement in the R-Value of Aluminum Strip by a Continuous Shear Deformation Process,” Scripta Materialia, Vol. 42, No. 12, 2000, pp. 1139-1144. doi:10.1016/S1359-6462(00)00349-3
[11] J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, “Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening,” Acta Materialia, Vol. 49, No. 9, 2001, pp. 1497-1505. doi:10.1016/S1359-6454(01)00069-6
[12] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, “Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Processs,” Scripta Materialia, Vol. 40, No. 7, 1999, pp. 795-800. doi:10.1016/S1359-6462(99)00015-9
[13] W. Chen, D. Ferguson and H. Ferguson, “Multi-Axis Deformation Methods to Achieve Extremely Large Strain and Ultrafine Grains,” In: R. S. Mishra, et al., Eds., Ultrafine Grained Materials, TMS, Warrendale, Pennsylvania, 2000, pp. 235-245.
[14] O. V. Abramov, “High-Intensity Ultrasonics Theory and Industrial Applications,” Gorden and Breach Science Piblishers, Singapore, 1998.
[15] P. V. Liddicoat, X. Liao, Y. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valiev and S. P. Ringer, “Nanostructural Hierarchy Increases the Strength of Aluminum Alloys,” Nature Communications, 2010, Vol. 1062, pp. 1-7. doi:10.1038/ncomms1062
[16] O. V. Abramov, “High-Intensity Ultrasonics Theory and Industrial Applications,” Gorden and Breach Science Piblishers, Singapore, 1998.
[17] Q. Han, C. Xu and X. Jian, “A Method of Producing Nanostructured Metals Using High-Intensity Ultrasonic Vibration,” US Patent No. 0256764, 2007.