JBiSE  Vol.3 No.10 , October 2010
Foetal heart rate variability frequency characteristics with respect to uterine contractions
Abstract: Monitoring foetal health is important to appropriately plan pregnancy management and delivery. Cardiotocography (CTG) is one of the most employed diagnostic techniques. Because CTG interpretation still lacks of complete reliability, new methods of interpretation and parameters are necessary to further support physicians’ decisions. To this aim, indexes related to variability of foetal heart rate (FHRV) are particularly studied. Frequency components of FHRV and their modifications can be analysed by applying a time-frequency approach, which allows for a distinct understanding of the spectral components related to foetal reactions to internal and external stimuli and their change over time. Being uterine contractions (UC) strong stimuli for the foetus and his autonomic nervous system (ANS), it is worth exploring the FHRV response to UC. This study analysed modifications of FHRV frequency characteristics with respect to 108 UC (relative to 35 healthy foetuses). Results showed a statistically significant (t-test, p < 0.01) power increase of the FHRV in both LF and HF bands in correspondence of the contractions. Moreover, we observed a shift to higher values of the maximum frequency contained in the signal corresponding to the power increase. Such modifications of the FHRV power spectrum can be a sign of ANS reaction and therefore represent additional, objective information about foetal reactivity and health during labour.
Cite this paper: nullCesarelli, M. , Romano, M. , Ruffo, M. , Bifulco, P. and Pasquariello, G. (2010) Foetal heart rate variability frequency characteristics with respect to uterine contractions. Journal of Biomedical Science and Engineering, 3, 1014-1021. doi: 10.4236/jbise.2010.310132.

[1]   Romano, M., Bifulco, P., Cesarelli, M., Sansone, M., and Bracale, M. (2006) Fetal heart rate power spectrum response to uterine contraction. Medical & Biological Engineerin & Computing, 44(3), 188-201.

[2]   Cesarelli, M., Romano, M., Bifulco, P., (2009) Comparison of short term variability indexes in cardiotocographic foetal monitoring. Computers in Biology and Medicine, 39(2), 106-118.

[3]   Signorini, M.G., Magenes, Cerutti, G.S., Arduini, D. (2003) Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Transaction on Biomedical Engineering, 50(3), 365-375.

[4]   Sweha, A., Hacker, T.W. (1999) Interpretation of the electronic fetal heart rate during labor. American Aca- demy of Family Physician, 59 (9), 2487-2500.

[5]   Rizzo, N., Accorsi, P., Baronciani, D., et al., “La sor- veglianza del benessere fetale in travaglio di parto. Linea guida basata su prove di efficacia Regione Emilia Romagna, Progetto n. 3.

[6]   Hoyer, D., Heinicke, E., Jaekel, S., Tetschke, F., Paolo, D.P., Haueisen, J., Schleu?ner, E. and Schneider, U. (2009) Indices of fetal development derived from heart rate patterns. Early Human Development, 85, 379-386.

[7]   Philip, A., Warrick, E.F., Hamilton, D.P. and Robert E.K., “Identification of the dynamic relationship between intra-partum uterine pressure and fetal heart rate for normal and hypoxic foetuses”, IEEE Transactions on Bio-Me- dical Engineering, 56(6), 1587-1597.

[8]   Martin, C.B. (1982) Physiology and clinical use of fetal heart rate variability. Clinics in Perinatology, 9(2), 339- 352.

[9]   Dawes, G.S., Meir, Y.J., Mandruzzato, G.P. (1994) Computerized evaluation of fetal heart-rate patterns. Journal of Perinatal Medicine, 22(6), 491-499.

[10]   Romano, M., Cesarelli, M., Bifulco, P., Sansone, M. and Bracale, M. (2002) Development of an algorithm for homogeneous FHR signals identification. Proceedings of Embec’02 2nd European Medical and Biological Engineering Conference, December 2002, Vienna, Austria; II: 1542.

[11]   Sibony, O., Fouvillot, J.P., Benaoudia, M., Benhalla, A., Oury, J.F., Sureau, C. and Blot, P. (1994) Quantification of the heart rate variability by spectral analysis of fetal well-being and fetal distress. European Journal of Obstetrics & Gynecology and Reproductive Biology, 54(2), 103-108.

[12]   Cerutti, S., Civardi, S., Bianchi, A., Signorini, M.G., Ferrazzi, E. and Pardi, G. (1989) Spectral analysis of antepartum heart rate variability. Clinical Physics and Physiological Measurement, 10(Suppl B), 27-31.

[13]   Divon, M.Y., Muska, Y., Platt, L.D. and Paldi, E. (1984) Increased beat to beat variability during uterine contractions: A common association in uncomplicated labor. Ame- rican Journal of Obstetrics and Gynecology, 149(8), 893- 896.

[14]   Romano, M., Bracale, M., Cesarelli, M., Campanile, M., Bifulco, P., Falco, M.D., Sansone, M., Lieto, A.D. (2005) Antepartum cardiotocography: A study of fetal reactivity in frequency domain. Computers in Biology and Medicine, 36 (6), 619-633.

[15]   Geijn, H.P. (1996) Developments in CTG analysis. Baillieres Clin Obstet Gynaecol, 10(2), 185-209.

[16]   Gudmudsson, S. and Olofsson, P. (2004) Acute changes of cerebral venous blood flow in growth-restricted human fetuses in response to uterine contractions. Ultrasound Obstet Gynecol, 24(5), 516-521.

[17]   Li, H., Gudmundsson, S. and Olofsson, P. (2003) Acute increase of umbilical artery vascular flow resistance in compromised fetuses provoked by uterine contractions. Early Human Development, 74(1), 47-56.

[18]   Laguna, P., Moody, G.B. and Mark, R.G. (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Transactions on Biomedical Engineering, 45(6), 698-715.

[19]   Pola, S., Macerata, A., Emdin, M. and Marchesi, C. (1996) Estimation of the power spectral density in nonstationary cardiovascular time series: Assessing the role of the time-frequency representation (TFR). IEEE Tran- sactions on Biomedical Engineering, 43(1), 46-59.

[20]   Salamalekis, E., Thomopoulos, P., Giannaris, D., Salloum, I., Vasios, G., Prentza, A., Koutsouris, D. (2002) Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG: An International Journal of Obstetrics and Gynaecology, 109(10), 1137-1142.

[21]   Cesarelli, M., Romano, M., Ruffo, M., Bifulco, P., Pasquariello, G. and Fratini, A. (2009) PSD modifications of FHRV due to CTG storage rate. Proceedings of 9th International Conference on Information Technology and Applications in Biomedicine, Larnaca, Cyprus.

[22]   Romano, M., Cesarelli, M., Bifulco, P., Ruffo, M., Fratini, A. and Pasquariello, G. (2009) Time-frequency analysis of CTG signals. Current Development in Theory and Applications of Wavelets, 3(2), 169-192.

[23]   Cesarelli, M., Romano, M., Bifulco, P., Fedele, F. and Bracale, M. (2007) An algorithm for the recovery of fetal heart rate series from CTG data. Computers in Biology and Medicine, 37(5), 663-669.

[24]   Romano, M., Cesarelli, M., Bifulco, P., Sansone, M. and Bracale, M. (2003) Study of fetal autonomous nervous system’s response by means of FHRV frequency analysis. 1st International IEEE EMBS Conference on Neural Engineering, Capri, Italy, 399-402.

[25]   Hieftje, G.M., Bistroff, R.I. and Lim, R. (1973) Application of correlation analysis for signal-to-noise enhancement in flame spectrometry. Analytical chemistry, 45(2), 253-258.

[26]   Karin, J., Hirsch, M., Sagiv, C. and Akeselrod, S. (1992) Fetal autonomic nervous system activity monitoring by spectral analysis of heart rate variations. IEEE Proceedings of Conference on Computers in Cardiology, 479-482.

[27]   Moraes, R., Aydin, N. and H. Evans, D. (1995) The performance of three maximum frequency envelope detection algorithms for Doppler signals. Journal of Vascular Investigation, 1(3), 126-134.

[28]   Alessio, T.D., (1985) Objective algorithm for maximum frequency estimation in Doppler spectral analysers. Medical & Biological Engineering & Computing, 23(1), 63-68.

[29]   David, M., Hirsch, M. and Akeselrod, S. (2006) Maturation of fetal cardiac autonomic control as expressed by fetal heart rate variability. IEEE Proceedings of Conference on Computers in Cardiology, 901-904.

[30]   Oppenheimer, L.W. and Lewinsky, R.M. (1994) Power spectral analysis of fetal heart rate. Baillère's Clinical Obstetrics and Ginecology, 8(3), 643-661.

[31]   Logier, R., jonckheere, J.D., Jeanne, M. and Matis, R. (2008) Fetal distress diagnosis using heart rate variability analysis: design of a high frequency variability index. IEEE Proceedings of 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, 4728- 4731.

[32]   Cao, H., Lake, D.E., Chisholm, C.A., Ferguson, J.E., Grifin, M.P. and Moorman, J.R. (2003) Toward quantitative monitoring of human cardiotocography during labor. Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico.

[33]   Salamalekis, E., Vitoratos, N., Loghis, C., Panayoto- poulos, N., Kassanos, D. and Creatsas, G. (1999) Evaluation of fetal heart rate patterns during the second stage of labor through fetal oximetry. Gynecologic and Obstetric Investigation, 48, 151-154.

[34]   Zimmer, E.Z., Paz, Y., Copel, J.A. and Weiner, Z. (1998) The effect of uterine contractions on intrapartum fetal heart rate analyzed by a computerized system. American Journal of Obstetrics and Ginecology, 178(3), 436-440.

[35]   Jensen, O.H.R. and Narverud, G. (1994) Fetal heart rate decelerations and umbilical cord blood gas values. European Journal of Obstetrics & Gynecology and Reproductive Biology, 53(2), 103-106.

[36]   Padhye, N.S., Duan, Z. and Verklan, M.T. (2004) Response of fetal heart rate to uterine contractions. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, 3953-3955.

[37]   Kodama, Y., Sameshima, H., Ikeda, T. and Ikenoue, T. (2009) Intrapartum fetal heart rate patterns in infants (≥34 weeks) with poor neurological outcome. Early Human Development, 85(4), 235-238.

[38]   Goeschen, K. (1998) Cardiotocografia pratica. Roma, V edizione, CIC Edizioni Internazionali, Roma.

[39]   Rantonen, T., Ekholm, E., Siira, S., Metsala, T., Leino, R., Ekblad, U. And Valimaki, I. (2001) Periodic spectral components of fetal heart rate variability reflect the changes in cord arterial base deficit values: A preliminary report. Early Hum Dev, 60(3), 233-238.

[40]   Ohta, T., Okamura, K., Kimura, Y., Suzuki, T., Watanabe, T., Yasui, T., Yaegashi, N. and Yajima, A. (1999) Alteration in the low-frequency domain in power spectral analysis of fetal heart beat fluctuations. Fetal Diagnosis and Therapy, 14(2), 92-97.

[41]   .Geijn, H.P., Jongsma, H.W., Haan, J. and Eskes. T.K. A.B. (1980) Analysis of heart rate and beat-to-beat variability: Interval difference index. American Journal of Obstetrics and Ginecology, 138(3), 246-252.