[1] Tamuri, A.U., Reis, M., Hay, A.J. and Goldstein, R.A. (2009) Identifying changes in selective constraints: Host shifts in influenza. PLoS Comput Biol, 5(11), e1000564.
[2] Du, X., Wang, Z. and Wu, A., et al. (2008) Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution. Genome Res, 18(1), 178- 187.
[3] Allen, J., Gardner, S., Vitalis, E. and Slezak, T. (2009) Conserved amino acid markers from past influenza pandemic strains. BMC Microbiol, 9, 77.
[4] Furuse,Y., Suzuki, A., Kamigaki, T. and Oshitani, H. (2009) Evolution of the M gene of the influenza A virus in different host species: Large-scale sequence analysis. Virology, 6, 67.
[5] Suzuki, Y. (2006) Natural selection on the influenza virus genome. Molecular Biology and Evolution, 23(10), 1902.
[6] Xia, Z., Jin, G., Zhu, J.and Zhou, R. (2009) Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus. Bioinformatics, 25(28), 2309-2317.
[7] Huang, J., King, C. and Yang, J. (2009) Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses. BMC Bioinformatics, 10(1), S41.
[8] Dunn, S.D., Wahl, L.M. and Gloor, G.B. (2008) Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics, 24(3), 333-340.
[9] Witten, I.H. and Frank, E. (2005) Data mining: Practical machine learning tools and techniques. 2nd Edition, Morgan Kaufmann Publishers, Massachusetts.
[10] Cohen, A., Bhupatiraju, R. and Hersh, W. (2004) Feature generation, feature selection, classifiers, and conceptual drift for biomedical document triage. Proceedings of the Thirteenth Text Retrieval Conference.
[11] Quinlan, J.R. (1993) C4.5: Programs for machine learning. Morgan Kaufmann Publishers, Massachusetts.
[12] Holte, R.C. (1993) Very simple classification rules perform well on most commonly used data sets. Machine Learning, 11(1), 63-90.
[13] Kononenko, I. (1994) Estimating attributes: analysis and extensions of relief. Machine Learning: ECML-94, 784, 171-182.
[14] Platt, J. (1999) Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods: support vector learning. MIT Press, Cambridge, Massachusetts, 185-208.
[15] Cortes, C. and Vapnik, V. (1995) Support-vector network. Machine Learning, 20(3), 273-297.
[16] Domingos, P. and Pazzani, M. (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2), 103-137.
[17] Breiman, L. (2001) Random Forests. Machine Learning, 45(1), 5-32.
[18] Rodriguez, J.J., Kuncheva, L.I. and Alonso, C.J. (2006) Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619-1630.