OPJ  Vol.3 No.1 , March 2013
Gold Nanoparticles: Acceptors for Efficient Energy Transfer from the Photoexcited Fluorophores
Abstract: The citrate reduction method of synthesis of gold nanoparticles (AuNP) is standardized with the assistance of instruments like spectrophotometer and TEM. A correlation has been developed between the particle diameter and the fractional concentration of the reductant. This enables one to assess the diameter of the AuNP to be synthesized, in advance, from the composition of the reaction mixture and the diameter of the synthesized particles can be confirmed simply from spectrophotometry. Further, it has been demonstrated that the synthesized AuNPs serve as excellent acceptors for a super-efficient energy transfer (ET) from the donor coumarin 153, leading to a quenching of fluorescence of the latter. The Stern-Volmer constants determined from the fluorescence lifetimes are in the range 107 - 109 mol-1·dm3 and are orders of magnitude higher than the normal photochemical quenching processes. The energy transfer efficiency increases radically with an increase in the size of the metal nanoparticle. The highly efficient energy transfer and the variation of the efficiency of the ET process with a variation of the particle size is ascribed to a large enhancement in the extinction coefficient and an increase in the spectral overlap between the plasmon absorption band of AuNPs and the fluorescence spectrum of C153 with an increase in the size of the nanoparticles. The impact of the work remains in providing a demonstration of a super quenching effect of the AuNPs and projects that they can be exploited for developing biosensors with high degree of sensitivity, if tagged to the biomacromolecules.
Cite this paper: D. Ghosh and N. Chattopadhyay, "Gold Nanoparticles: Acceptors for Efficient Energy Transfer from the Photoexcited Fluorophores," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 18-26. doi: 10.4236/opj.2013.31004.

[1]   A. Borriello, P. Agoretti, A. Cassinese, P. D’Angelo, G. T. Mohanraj and L. Sanguigno, “Electrical Bistability in Conductive Hybrid Composites of Doped Polyaniline Nanofibers-Gold Nanoparticles Capped with Dodecane Thiol,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 11, 2009, pp. 6307-6314. doi:10.1166/jnn.2009.1470

[2]   C.-W. Hu, Y. Huang and R. C.-C. Tsiang, “Thermal and Spectroscopic Properties of Polystyrene/Gold Nanocomposite Containing Well-Dispersed Gold Nanoparticles,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 5, 2009, pp. 3084-3091. doi:10.1166/jnn.2009.003

[3]   M.-C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews, Vol. 104, No. 1, 2002, pp. 293-346. doi:10.1021/cr030698+

[4]   C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1025-1102. doi:10.1021/cr030063a

[5]   E. Katz and I. Willner, “Integrated Nanoparticle-Bio molecule Hybrid Systems: Synthesis, Properties, and Applications,” Angewandte Chemie International Edition, Vol. 43, No. 45, 2004, pp. 6042-6108. doi:10.1002/anie.200400651

[6]   M. J. Kogan, N. G. Bastus, R. Amigo, D. Grillo-Bosch, E. Araya, E. Araya, A. Turiel, A. Labarta, E. Giralt and V. F. Puntes, “Nanoparticle-Mediated Local and Remote Manipulation of Protein Aggregation,” Nano Letters, Vol. 6, No. 1, 2006, pp. 110-115. doi:10.1021/nl0516862

[7]   T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl and J. Feldmann, “Surface-Plasmon Resonances in Single Metallic Nanoparticle,” Physical Review Letters, Vol. 80, No. 19, 1998, pp. 4249-4252. doi:10.1103/PhysRevLett.80.4249

[8]   Y. W. C. Cao, R. Jin and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science, Vol. 297, No. 5586, 2002, pp. 1536-1540. doi:10.1126/science.297.5586.1536

[9]   R. D. Averitt, S. L.Westcott and N. J. Halas, “Linear Optical Properties of Gold Nanoshells,” Optics InfoBase: Journal of the Optical Society of America B, Vol. 16, No. 10, 1999, pp. 1824-1832. doi:10.1364/JOSAB.16.001824

[10]   V. G. Praig, H. McIlwee, C. L. Schauer, R. Boukherroub and S. Szunerits, “Localized Surface Plasmon Resonance of Gold Nanoparticle-Modified Chitosan Films for Heavy Metal Ions Sensin,” Journal of Nanoscience and Nano technology, Vol. 9, No. 1, 2009, pp. 350-357. doi:10.1166/jnn.2009.J064

[11]   T. A. Taton, G. Lu and C. A. Mirkin, “Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes,” Journal of the American Chemical Society, Vol. 123, No. 21, 2001, pp. 5164-5165. doi:10.1021/ja0102639

[12]   E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Physical Review Letters, Vol. 89, No. 20, 2002, Article ID: 203002/1-4. doi:10.1103/PhysRevLett.89.203002

[13]   B. Dubertret, M. Calame and A. J. Libchaber, “Single-Mismatch Detection Using Gold-Quenched Fluorescent Oligonucleotides,” Nature Biotechnology, Vol. 19, No. 4, 2001, pp. 365-370. doi:10.1038/86762

[14]   C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco and A. J. Heeger, “Beyond Superquenching: Hyper-Efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles,” Proceedings of the National Academy of Sciences, Vol. 100, No. 11, 2003, pp. 6297-6301. doi:10.1073/pnas.1132025100

[15]   Q. Xu, J. Liu, Z. He and S. Yang, “Superquenching Acridinium Ester Chemiluminescence by Gold Nanoparticles for DNA Detection,” Chemical Communications, Vol. 46. No. 46, 2010, pp. 8800-8802. doi:10.1039/c0cc03349a

[16]   J. Griffin, A. K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu and P. C. Ray, “Size and Distance-Dependent Nanoparticle Surface Energy Transfer (NSET) Method for Selective Sensing of Hepatitis C Virus RNA,” Chemistry—A European Journal, Vol. 15, No. 2, 2009, pp. 342-351. doi:10.1002/chem.200801812

[17]   M. Li, S. K. Cushing, Q. Wang, X. Shi, L. A. Hornak, Z. Hong and N. Wu, “Size-Dependent Energy Transfer between CdSe/ZnS Quantum Dots and Gold Nanoparticles,” The Journal of Physical Chemistry Letters, Vol. 2, No. 17, 2011, pp. 2125-2129. doi:10.1021/jz201002g

[18]   C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” Journal of the American Chemical Society, Vol. 127, No. 9, 2005, pp. 3115-3119. doi:10.1021/ja043940i

[19]   T. L. Jennings, M. P. Singh and G. F. Strouse, “Fluorescent Lifetime Quenching Near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity,” Journal of the American Chemical Society, Vol. 128, No. 16, 2006 pp. 5462-5467. doi:10.1021/ja0583665

[20]   T. L. Jennings, J. C. Schlatterer, M. P. Singh, N. L. Greenbaum and G. F. Strouse, “NSET Molecular Beacon Analysis of Hammerhead RNA Substrate Binding and Catalysis,” Nano Letters, Vol. 6, No. 7, 2006, pp. 1318-1324. doi:10.1021/nl052458a

[21]   T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English and H. Mattoussi, “On the Quenching of Semiconductor Quantum dot Photoluminescence by Proximal Gold Nanoparticles,” Nano Letters, Vol. 7, No. 10, 2007, pp. 3157-3164. doi:10.1021/nl071729+

[22]   T. Sen, S. Sadhu and A. Patra, “Surface Energy Transfer from Rhodamine 6G to Gold Nanoparticles: A Spectroscopic Ruler,” Applied Physics Letters, Vol. 91, No. 4, 2007, Article ID: 043104/1-3. doi:10.1063/1.2762283

[23]   J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd Edition, Springer, New York, 2006. doi:10.1007/978-0-387-46312-4

[24]   P. G. Wu and L. Brand, “Resonance Energy Transfer: Methods and Applications,” Analytical Biochemistry, Vol. 218, No. 1, 1994, pp. 1-13. doi:10.1006/abio.1994.1134

[25]   B. W. Van Der Meer, G. Coker III and S-Y. S. Chen, “Resonance Energy Transfer: Theory and Data,” VCH, New York, 1994.

[26]   P. R. Selvin, “Fluorescence Resonance Energy Transfer,” Methods in Enzymology, Vol. 246. No. 1995, pp. 300-334.

[27]   D. Sarkar, P. Das and N. Chattopadhyay, “Fluorescence Resonance Energy Transfer: A Spectroscopic Ruler,” ISRAPS Bulletin, Vol. 20, No. 2, 2008, pp. 31-41.

[28]   R. R. Chance, A. Prock and R. Silbey, “Molecular Fluorescence and Energy Transfer near Interfaces,” Advances in Chemical Physics, Vol. 37, Wiley & Sons, New York, 1978. doi:10.1002/9780470142561.ch1

[29]   D. Seth, S. Sarkar and N. Sarkar, “Dynamics of Solvent and Rotational Relaxation of Coumarin 153 in a Room Temperature Ionic Liquid, 1-Butyl-3-methylimidazolium Octyl Sulfate, Forming Micellar Structure,” Langmuir, Vol. 24, No. 14, 2008, pp. 7085-7091. doi:10.1021/la800813u

[30]   Y. Kimura and N. Hirota, “Effect of Solvent Density and Species on Static and Dynamic Fluorescence Stokes Shifts of Coumarin 153,” Journal of Chemical Physics, Vol. 111, No. 12, 1999, pp. 5474-5484. doi:10.1063/1.479808

[31]   M. Maroncelli, “The Dynamics of Solvation in Polar Liquids,” Journal of Molecular Liquids, Vol. 57, No. 1, 1993, pp. 1-37. doi:10.1016/0167-7322(93)80045-W

[32]   J. E. Lewis and M. Maroncelli, “On the (Uninteresting) Dependence of the Absorption and Emission Transition Moments of Coumarin 153 on Solvent,” Chemical Physics Letters, Vol. 282, No. 2, 1998, pp. 197-203. doi:10.1016/S0009-2614(97)01270-0

[33]   A. Henglein and D. Meisel, “Radiolytic Control of the Size of Colloidal Gold Nanoparticles,” Langmuir, Vol. 14, No. 26, 1998, pp. 7392-7396. doi:10.1021/la981278w

[34]   N. R. Jana, L. Gearheart and C. J. Murphy, “Seeding Growth for Size Control of 5 40 nm Diameter Gold Nanoparticle,” Langmuir, Vol. 17, No. 22, 2001, pp. 6782-6786. doi:10.1021/la0104323

[35]   Y. G. Sun and Y. N. Xia,“Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science, Vol. 298, No. 5601, 2002, pp. 2176-2179. doi:10.1126/science.1077229

[36]   A. C. Templeton, W. P. Wuelfing and R. W. Murray, “Monolayer-Protected Cluster Molecules,” Accounts of Chemical Research, Vol. 33, No. 1, 2000, pp. 27-36. doi:10.1021/ar9602664

[37]   D. A. Handley, “Methods for Synthesis of Colloidal Gold,” In: M. A. Hayat, Ed., Colloidal Gold: Principles, Methods, and Applications, Vol. 1, Chapter 2, Academic Press, New York, 1989.

[38]   G. Frens, “Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspension,” Nature Physics, Vol. 241, No. 1, 1973, pp. 20-22.

[39]   J. Turkevich, P. C. Stevenson and J. Hillier, “The Formation of Colloidal Gold,” The Journal of Physical Chemistry, Vol. 57, No. 7, 1953, pp. 670-673. doi:10.1021/j150508a015

[40]   M. Swierczewska, S. Lee and X. Chen,“The Design and Application of Fluorophore-Gold Nanoparticle Activatable Probes,” Physical Chemistry Chemical Physics, Vol. 13, No. 21, 2011, pp. 9929-9941. doi:10.1039/c0cp02967j

[41]   Y.-W. Lin, C.-C. Huang and H.-T. Chang, “Gold Nano particle Probes for the Detection of Mercury, Lead and Copper Ions,” Analyst, Vol. 136, No. 5, 2011, pp. 863-871. doi:10.1039/c0an00652a

[42]   G. K. Darbha, A. Ray and P. C. Ray, “Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish,” ACS Nano, Vol. 1, No. 3, 2007, pp. 208-214. doi:10.1021/nn7001954

[43]   S. Link, Z. L. Wang and M. A. El-Sayed, “Alloy Formation of Gold?Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition,” The Journal of Physical Chemistry B, Vol. 103, No. 18, 1999, pp. 3529-3533. doi:10.1021/jp990387w

[44]   G. Mie, “Beitrage zur Optik Truber Medien, Spezeill Kolloidaler Metall-sungen,”Annals of Physics, Vol. 25, 1908, pp. 377-455. doi:10.1002/andp.19083300302

[45]   D. Ghosh, D. Sarkar and N. Chattopadhyay, “Intramo lecular Charge Transfer Promoted Fluorescence Transfer: A Demonstration of Re-Absorption of the Donor Fluorescence by the Acceptor,” Journal of Molecular Liquids, Vol. 156, No. 2-3, 2010, pp. 131-136. doi:10.1016/j.molliq.2010.06.006

[46]   V. Amendola and M. Meneghetti, “Size Evaluation of Gold Nanoparticles by UV-vis Spectroscopy,” The Journal of Physical Chemistry C, Vol. 113, No. 11, 2009, pp. 4277-4285. doi:10.1021/jp8082425

[47]   A. L. González, C. Noguez, G. P. Ortiz and G. Rodrí guez-Gattorno, “Optical Absorbance of Colloidal Suspensions of Silver Polyhedral Nanoparticles,” The Journal of Physical Chemistry B, Vol. 109, No. 37, 2005, pp. 17512-17517. doi:10.1021/jp0533832

[48]   A. J. Haes, S. Zou, G. C. Schatz and R. P. Van Duyne, “Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” The Journal of Physical Chemistry B, Vol. 108, No. 22, 2004, 6961-6968. doi:10.1021/jp036261n

[49]   C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. L. Storhoff, “A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials,” Nature, Vol. 382, No. 6592, 1996, pp. 607-609. doi:10.1038/382607a0

[50]   G. Jones, W. R. Jackson, C. Y. Choi and W. R. Bergmark, “Solvent Effects on Emission Yield and Lifetime for Coumarin Laser Dyes. Requirements for a Rotatory Decay Mechanism,” The Journal of Physical Chemistry, Vol. 89, No. 2, 1985, pp. 294-300. doi:10.1021/j100248a024

[51]   P. Sen, D. Roy, S. K. Mondal, K. Sahu, S. Ghosh and K. Bhattacharyya, “Fluorescence Anisotropy Decay and Solvation Dynamics in a Nanocavity: Coumarin 153 in Methyl β-Cyclodextrins,” The Journal of Physical Chemistry A, Vol. 109, No. 43, 2005, pp. 9716-9722. doi:10.1021/jp051607a

[52]   D. Seth, D. Chakrabarty, A. Chakrabarty and N. Sarkar, “Study of Energy Transfer from 7-Amino Coumarin Donors to Rhodamine 6G Acceptor in Non-Aqueous Reverse Micelles,” Chemical Physics Letters, Vol. 401, No. 4-6, 2005, pp. 546-552. doi:10.1016/j.cplett.2004.11.119

[53]   B. N. J. Persson and N. D. Lang, “Electron-Hole-Pair Quenching of Excited States near a Metal,” Physical Review B, Vol. 26, No. 10, 1982, pp. 5409-5415. doi:10.1103/PhysRevB.26.5409