The Riemannian Structure of the Three-Parameter Gamma Distribution

Show more

References

[1] W.W. S. Chen, “Testing Gamma and Weibull Distribution: A Comparative Study,” Estadistica, Vol. 39, 1987, pp. 1-26.

[2] W. W. S. Chen, “Evaluation of the First 12 Derivatives of the Digamma PSI Functions with Applications,” Proceeding of Statistical Computing Section, 1982, pp. 293-298.

[3] W. W. S. Chen, “Curvature Gaussian or Riemann,” International Conference (IISA), McMaster University, Hamilton, 10-11 October 1998.

[4] D. R. Cox, “Tests of Separate Families of Hypotheses,” Proceedings of 4th Berkeley Symposium, Vol. 1, 1961, pp. 105-123.

[5] D. R Cox, “Further Results on Tests of Separate Families of Hypotheses,” Society B, Vol. 24, 1962, pp. 406-424.

[6] C. R. Rao, “Information and Accuracy Attainable in the Estimation of Statistical Parameters,” Bulletin of Calcutta Mathematical Society, Vol. 37, 1945, pp. 81-89.

[7] B. Efron, “Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency),” Annals of Statistics, Vol. 3, No. 6, 1975, pp. 1189-1217.
doi:10.1214/aos/1176343282

[8] A. F. S. Mitchell, “Statistical Manifolds of Univariate Elliptic Distributions,” International Statistical Review, Vol. 56, No. 1, 1988, pp. 1-16. doi:10.2307/1403358

[9] J. Burbea and C. R. Rao, “Entropy Differential Metric, Distance and Divergence Measures in Probability Spaces: A Unified Approach,” Journal Multivariate Analysis, Vol. 12, No. 4, 1982, pp. 575-596.
doi:10.1016/0047-259X(82)90065-3

[10] L. T. Skovgaard, “A Riemannian Geometry of the Multivariate Normal Model,” Scandinavian Journal of Statistics, Vol. 11, No. 4, 1984, pp. 211-223.

[11] Y. Sato, K. Sugawa and M. Kawaguchi, “The Geometrical Structure of the Parameter Space of the Two-Dimensional Normal Distribution,” Reports on Mathematical Physics, Vol. 16, No. 1, 1979, pp. 111-119.
doi:10.1016/0034-4877(79)90043-0

[12] R. E. Kass, “The Geometry of Asymptotic Inference,” Statistical Science, Vol. 4, No. 3, 1989, pp. 188-234.

[13] R. E. Kass and P. W. Vos, “Geometrical Foundations of Asymptotic Inference,” John Wiley & Sons, Inc., New York, 1997.

[14] A. C. Hearn, “REDUCE User’s and Contributed Packages Manual,” Version 3.7.

[15] N. Balakrishnan and W. Chen, “Handbook of Tables for Order Statistics from Gamma Distributions with Applications,” Kluwer Academic Publishers, Not Publish yet.

[16] N. L. Johnson and S. Kotz, “Continuous Univariate Distributions-1,” Houghton Mifflin Company, Boston, 1970.

[17] N. L. Johnson, S. Kotz and N. Balakrishnan, “Continuous Univariate Distributions,” 2nd Edition, John Wiley & Sons, Inc., New York, 1994.

[18] D. J. Struik, “Lectures on Classical Differential Geometry,” 2nd Edition, Dover Publications, Inc., New York, 1998.

[19] S. I. Goldberg, “Curvature and Homology,” Revised Edition, Dover Publications, Inc., New York, 1998.

[20] E. Kreyszig, “Differential Geometry,” Dover Publications, Inc., New York, 1991.