Construction and Application of 3-Point Tensor Product Scheme

Show more

References

[1] E. Catmull and J. Clark, “Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes,” Computer Aided Design, Vol. 10, No. 6, 1978, pp. 350-355.
doi:10.1016/0010-4485(78)90110-0

[2] D. Doo and M. A. Sabin, “Behaviour of Recursive Subdivision Surfaces Near Extraordinary Points,” Computer Aided Design, Vol. 10, No. 6, 1978, pp. 356-360.
doi:10.1016/0010-4485(78)90111-2

[3] U. Reif, “A Unified Approach to Subdivision Algorithms near Extraordinary Vertices,” Computer Aided Geometric Design, Vol. 12, 1995, pp. 153-174.
doi:10.1016/0167-8396(94)00007-F

[4] D. Zorin, “Subdivision and Multiresolution Surface Representations,” Ph.D. Thesis, Caltech, Pasadena, 1997.

[5] J. Stam, “Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values,” Proceedings of the Annual Conference Series of Computer Graphics, Orlando, July 1998, pp. 395-404.

[6] H. Hoppe, T. De-Rose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer and W. Stuetzle, “Piecewise Smooth Surface Reconstruction,” Proceedings of the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques, Orlando, 1994, pp. 295-302.

[7] C. Loop, “Smooth Subdivision Surfaces Based on Triangles,” Master’s Thesis, Department of Mathematics, University of Utah, Salt Lake City, 1987.

[8] G. Morin, J. Warren and H. Weimer, “A Subdivision Scheme for Surfaces of Revolution” Computer Aided Geometric Design, Vol. 18, No. 5, 2001, pp. 483-502.
doi:10.1016/S0167-8396(01)00043-7

[9] M. J. Jena, P. Shunmugaraj and P. J. Das, “A Non-Stationary Subdivision Scheme for Generalizing Trigonometric Spline Surfaces to Arbitrary Meshes,” Computer Aided Geometric Design, Vol. 20, No. 2, 2003, pp. 61-77.
doi:10.1016/S0167-8396(03)00008-6

[10] X. Li and J. Zheng, “An Alternative Method for Constructing Interpolatory Subdivision from Approximating Subdivision,” Computer Aided Geometric Design, Vol. 29, No. 7, 2012, pp. 474-484.
doi:10.1016/j.cagd.2012.03.008

[11] N. Dyn, “Interpolatory Subdivision Schemes and Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials,” In: A. Iske, E. Quak and M. S Floater, Eds, Tutorials on Multiresolution in Geometric Modeling, Springer, 2002, pp. 51-68.
doi:10.1007/978-3-662-04388-2_3

[12] G. Mustafa, F. Khan and A. Ghaffar, “The m-Point Approximating Subdivision Scheme,” Lobachevskii Journal of Mathematics, Vol. 30, No. 2, 2009, pp. 138-145.
doi:10.1134/S1995080209020061