Weighted Teaching-Learning-Based Optimization for Global Function Optimization

Show more

References

[1] R. V. Rao, V. J. Savsani and D. P. Vakharia, “Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems,” Computer-Aided Design, Vol. 43, No. 1, 2011, pp. 303-315. doi:10.1016/j.cad.2010.12.015

[2] R. V. Rao, V. J. Savsani and D. P. Vakharia, “Teaching-Learning-Based Optimization: An Optimization Method for Continuous Non-Linear Large Scale Problems,” INS 9211 No. of Pages 15, Model 3G 26 August 2011.

[3] R. V. Rao, V. J. Savsani and J. Balic, “Teaching Learning Based Optimization Algorithm for Constrained and Unconstrained Real Parameter Optimization Problems,” Engineering Optimization, Vol. 44, No. 12, 2012, pp. 1447-1462. doi:10.1080/0305215X.2011.652103

[4] R. V. Rao and V. K. Patel, “Multi-Objective Optimization of Combined Brayton and Inverse Brayton Cycles Using Advanced Optimization Algorithms,” Engineering Optimization, Vol. 44, No. 8, 2012, pp. 965-983.
doi:10.1080/0305215X.2011.624183

[5] R. V. Rao and V. J. Savsani, “Mechanical Design Optimization Using Advanced Optimization Techniques,” Springer-Verlag, London, 2012.
doi:10.1007/978-1-4471-2748-2

[6] V. Togan, “Design of Planar Steel Frames Using Teaching-Learning Based Optimization,” Engineering Structures, Vol. 34, 2012, pp. 225-232.
doi:10.1016/j.engstruct.2011.08.035?

[7] R. V. Rao and V. D. Kalyankar, “Parameter Optimization of Machining Processes Using a New Optimization Algorithm,” Materials and Manufacturing Processes, Vol. 27, No. 9, 2011, pp. 978-985.
doi:10.1080/10426914.2011.602792

[8] S. C. Satapathy and A. Naik, “Data Clustering Based on Teaching-Learning-Based Optimization. Swarm, Evolutionary, and Memetic Computing,” Lecture Notes in Computer Science, Vol. 7077, 2011, pp. 148-156,
doi:10.1007/978-3-642-27242-4_18

[9] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, 1975.

[10] J. G. Digalakis and K. G. Margaritis, “An Experimental Study of Benchmarking Functions for Genetic Algorithms,” International Journal of Computer Mathematics, Vol. 79, No. 4, 2002, pp. 403-416.
doi:10.1080/00207160210939

[11] R. C. Eberhart and Y. Shi, “Particle Swarm Optimization: Developments, Applications and Resources,” IEEE Proceedings of International Conference on Evolutionary Computation, Vol. 1, 2001, pp. 81-86.

[12] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” IEEE Proceedings of International Congress on Evolutionary Computation, Vol. 1, 2000, pp. 84-88.

[13] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE Proceedings of International Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948.
doi:10.1109/ICNN.1995.488968

[14] J. Kennedy, “Stereotyping: Improving Particle Swarm Performance with Cluster Analysis,” IEEE Proceedings of International Congress on Evolutionary Computation, Vol. 2, 2000, pp. 303-308.

[15] Y. Shi and R. C. Eberhart, “Comparison between Genetic Algorithm and Particle Swarm Optimization,” Lecture Notes in Computer Science—Evolutionary Programming VII, Vol. 1447, 1998, pp. 611-616.

[16] Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” Lecture Notes in Computer Science Evolutionary Programming VII, Vol. 1447, 1998, pp. 591-600. doi:10.1007/BFb0040810

[17] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” IEEE Proceedings of International Conference on Evolutionary Computation, Vol. 3, 1999, pp. 101-106.

[18] R. Storn and K. Price, “Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341-359. doi:10.1023/A:1008202821328

[19] R. Storn and K. Price, “Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report, International Computer Science Institute, Berkley, 1995.

[20] K. Price, R. Storn and A. Lampinen, “Differential Evolution a Practical Approach to Global Optimization,” Springer Natural Computing Series, Springer, Heidelberg, 2005.

[21] S. Das, A. Konar and U. K. Chakraborty, “Two Improved Differential Evolution Schemes for Faster Global Search,” Genetic and Evolutionary Computation Conference, Washington DC, 25-29 June 2005.

[22] Z. H. Zhan, J. Zhang, Y. Li and S. H. Chung, “Adaptive Particle Swarm Optimization,” IEEE Transactions on Systems, Man, and Cybernetics—Part B, Vol. 39, No. 6, 2009, pp. 1362-1381. doi:10.1109/TSMCB.2009.2015956

[23] A. Ratnaweera, S. Halgamuge and H. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, 2004, pp. 240-255. doi:10.1109/TEVC.2004.826071

[24] B. Alatas, “Chaotic Bee Colony Algorithms for Global Numerical Optimization,” Expert Systems with Applications, Vol. 37, No. 8, 2010, pp. 5682-5687.
doi:10.1016/j.eswa.2010.02.042

[25] G. P. Zhu and S. Kwong, “Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization,” Applied Mathematics and Computation, Vol. 217, No. 7, 2010, pp. 3166-3173. doi:10.1016/j.amc.2010.08.049

[26] F. Kang, J. J. Li and Z. Y. Ma, “Rosenbrock Artificial Bee Colony Algorithm for Accurate Global Optimization of Numerical Functions,” Information Sciences, Vol. 181, No. 16, 2011, pp. 3508-3531.
doi:10.1016/j.ins.2011.04.024

[27] W. F. Gao and S. Y. Liu, “Improved Artificial Bee Colony Algorithm for Global Optimization,” Information Processing Letters, Vol. 111, No. 17, 2011, pp. 871-882.
doi:10.1016/j.ipl.2011.06.002

[28] S. Das and A. Abraham and A. Konar, “Automatic Clustering Using an Improved Differential Evolution Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, Vol. 38, No. 1, 2008.

[29] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, “Differential Evolution Using a Neighborhood-Based Mutation Operator,” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 3, 2009, pp. 526-553.
doi:10.1109/TEVC.2008.2009457