Mohamed El Naschie’s Revision of Albert Einstein’s *E = m*_{0}*c*^{2}: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos

Affiliation(s)

Nantong Textile Institute, National Engineering Laboratory for Modern Silk, College of Textile and Clothing, Soochow University, Suzhou, China.

Technical School Center of Maribor, Maribor, Slovenia.

Nantong Textile Institute, National Engineering Laboratory for Modern Silk, College of Textile and Clothing, Soochow University, Suzhou, China.

Technical School Center of Maribor, Maribor, Slovenia.

ABSTRACT

The Egyptian engineering scientist and theoretical physicist Mohamed El Naschie has found a definite resolution to the missing dark energy of the cosmos based on a revision of the theory of Relativity. Einstein’s equation of special relativity *E* = *m*_{0}*c*^{2}, where *m*_{0} is the controversial rest mass and *c* is the velocity of light developed in smooth 4*D* space-time was transferred by El Naschie to a rugged Calabi-Yau and *K*3 fuzzy Kahler manifold. The result is an accurate, effective quantum gravity energy-mass relation which correctly predicts that 95.4915028% of the energy in the cosmos is the missing hypothetical dark energy. The agreement with WMAP and supernova measurements is astounding. Different theories are used by El Naschie to check the calculations and all lead to the same quantitative result. Thus the theories of varying speed of light, scale relativity, E-infinity theory, M-theory, Heterotic super strings, quantum field in curved space-time, Veneziano’s dual resonance model and Nash’s Euclidean embedding all reinforce, without any reservation, the above mentioned theoretical result of El Naschie which in turn is in total agreement with the most sophisticated cosmological measurement. Incidentally these experimental measurements and analysis were awarded the 2011 Nobel Prize in Physics to Adam Riess, Brian Schmidt, and Saul Perlmutter.

Cite this paper

J. He and L. Marek-Crnjac, "Mohamed El Naschie’s Revision of Albert Einstein’s*E = m*_{0}*c*^{2}: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos," *International Journal of Modern Nonlinear Theory and Application*, Vol. 2 No. 1, 2013, pp. 55-59. doi: 10.4236/ijmnta.2013.21006.

J. He and L. Marek-Crnjac, "Mohamed El Naschie’s Revision of Albert Einstein’s

References

[1] R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.

[2] Y. Baryshev and P. Teerikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore, 2011.

[3] L. Nottale, “Scale Relativity,” Imperial College Press, London, 2011.

[4] L. Amendola and S. Tsujikawa, “Dark Energy, Theory and Observations,” Cambridge University Press, Cambridge, 2010.

[5] J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” 2001, arXiv:hep-th/0112090V2.

[6] J. Mageuijo, “Faster than the Speed of Light,” William Heinemann, London, 2003.

[7] M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics,” (An Informal Review), Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059

[8] M. S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477-481.

[9] C. Nash and S. Sen, “Topology and Geometry for Physicists,” Academic Press, San Diego, 1983.

[10] D. Joyce, “Compact Manifolds with Special Holonomy,” Oxford Press, Oxford, 2003.

[11] S. Yau and S. Nadis, “The Shape of Inner Space,” Perseus Book Group, New York, 2010.

[12] J. Polchinski, “String Theory,” Cambridge University Press, Cambridge, 1999.

[13] M. S. El Naschie, “On a Class of Fuzzy K?hler-Like Manifolds,” Chaos, Solitons & Fractals, Vol. 26, No. 2, 2005, pp. 477-481. doi:10.1016/j.chaos.2004.12.024

[14] M. S. El Naschie, “E-Infinity-Some Recent Results and New Interpretations,” Chaos, Solitons & Fractals, Vol. 29, No. 4, 2006, pp. 845-853. doi:10.1016/j.chaos.2006.01.073

[15] C. Rovelli, “Quantum Gravity,” Cambridge Press, Cambridge, 2004. doi:10.1017/CBO9780511755804

[16] M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Space-Time Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007

[17] J.-H. He, et al, “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space-Time,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.

[18] M. S. El Naschie and L. Marek-Crnjac, “Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity,” International Journal of Modern Nonlinear Theory and Application, in Press, 2012.

[19] M. S. El Naschie, “Revising Einstein’s E = mc^{2}, a Theoretical Resolution of the Mystery of Dark Energy,” Proceedings of the Fourth Arab International Conference in Physics and Material Science, Egypt, 1-3 October 2012, p. 1.

[1] R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.

[2] Y. Baryshev and P. Teerikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore, 2011.

[3] L. Nottale, “Scale Relativity,” Imperial College Press, London, 2011.

[4] L. Amendola and S. Tsujikawa, “Dark Energy, Theory and Observations,” Cambridge University Press, Cambridge, 2010.

[5] J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” 2001, arXiv:hep-th/0112090V2.

[6] J. Mageuijo, “Faster than the Speed of Light,” William Heinemann, London, 2003.

[7] M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics,” (An Informal Review), Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059

[8] M. S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477-481.

[9] C. Nash and S. Sen, “Topology and Geometry for Physicists,” Academic Press, San Diego, 1983.

[10] D. Joyce, “Compact Manifolds with Special Holonomy,” Oxford Press, Oxford, 2003.

[11] S. Yau and S. Nadis, “The Shape of Inner Space,” Perseus Book Group, New York, 2010.

[12] J. Polchinski, “String Theory,” Cambridge University Press, Cambridge, 1999.

[13] M. S. El Naschie, “On a Class of Fuzzy K?hler-Like Manifolds,” Chaos, Solitons & Fractals, Vol. 26, No. 2, 2005, pp. 477-481. doi:10.1016/j.chaos.2004.12.024

[14] M. S. El Naschie, “E-Infinity-Some Recent Results and New Interpretations,” Chaos, Solitons & Fractals, Vol. 29, No. 4, 2006, pp. 845-853. doi:10.1016/j.chaos.2006.01.073

[15] C. Rovelli, “Quantum Gravity,” Cambridge Press, Cambridge, 2004. doi:10.1017/CBO9780511755804

[16] M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Space-Time Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007

[17] J.-H. He, et al, “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space-Time,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.

[18] M. S. El Naschie and L. Marek-Crnjac, “Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity,” International Journal of Modern Nonlinear Theory and Application, in Press, 2012.

[19] M. S. El Naschie, “Revising Einstein’s E = mc