Back
 AS  Vol.4 No.3 , March 2013
Residue patterns of indoxacarb and pyridalyl in treated cauliflower
Abstract: The biological half-life and final residue levels of indoxacarb and pyridalyl were determined in cauliflower over a 10-day cultivation period following applications of a standard (100 g a.i.ha–1 and 200 g a.i.·ha–1, respectively) and double dose (200 g a.i.·ha–1 and 400 g a.i.·ha–1, respectively). The residue levels were analyzed by gas chromatography with recovery ranging from 92.1% to 109.7%. The biological half-lives of indoxacarb and pyridalyl were 6.33 and 7.74 days for the standard dose, and 6.26 and 7.44 days for the double dose, respectively. The initial and persisting concentrations of indoxacarb and pyridalyl were all below the Korean maximum residue limits for broccoli of 1.0 mgkg–1 and 3.0 mgkg–1, respectively.
Cite this paper: Yoon, J. , Park, J. , Moon, H. , Han, G. and Lee, K. (2013) Residue patterns of indoxacarb and pyridalyl in treated cauliflower. Agricultural Sciences, 4, 111-116. doi: 10.4236/as.2013.43017.
References

[1]   Takkar, R., Sahoo, S., Singh, G., Mandal, K., Battu, R. and Singh, B. (2011) Persistence of indoxacarb on cauliflower (Brassica oleracea var. botrytis. L.) and its risk assessment. American Journal of Analytical Chemistry, 2, 69-76. doi:10.4236/ajac.2011.228126z

[2]   Raina, A. and Raina, M. (2008) Dissipation of chlorpyriphos on cauliflower (Brassica oleracea L. var. botrytis). Pesticide Research Journal, 20, 263-265.

[3]   Urvashi, Jyot, G., Sahoo, S.K., Kaur, S., Battu, R.S. and Singh, B. (2012) Estimation of indoxacarb residues by QuEChERS technique and its degradation pattern in cabbage. Bulletin of Environmental Contamination and Toxicology, 88, 372-376. doi:10.1007/s00128-011-0468-8

[4]   Wing, K.D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M. and Schnee, M. (2000) Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection, 19, 537-545. doi:10.1016/S0261-2194(00)00070-3

[5]   Sakamto, N., Saito, S., Hirose, T., Suzuki, M., Matsuo, S., Izumi, K., Nagatomi, T., Ikegami, H., Umeda, K., Tsushima, K. and Matsuo, N. (2003) The discovery of pyridalyl: A novel insecticidal agent for controlling lepidopterous pests. Pest Management Science, 60, 25-34. doi:10.1002/ps.788

[6]   Sakamoto, N., Umeda, N., Umeda, K., Matsuo, S., Haga, T., Fujisawa, T. and Tomigahara, Y. (2005) Research and development of a novel insecticide “pyridalyl”. Sumitomo Kagaku, 2005, 33-44.

[7]   Lee, E.Y., Kim, D.K., Park, I.Y., Noh, H.H., Park, Y.S., Kim, T.H., Jin, C.W., Kim, K.I., Yun, S.S., Oh, S.K. and Kyung, K.S. (2008) Residue patterns of indoxacarb and thiamethoxam in Chinese cabbage (Brassica campestris L.) grown under greenhouse conditions and their estimated daily intake. Korean Journal of Environmental Agriculture, 27, 92-98. doi:10.5338/KJEA.2008.27.1.092

[8]   Kim, S.W., Lee, E.M., Lin, Y., Park, H.W., Lee, H.R., Riu, M.J., Na, Y.R., Noh, J.E., Keum, Y.S. and Kim, J.H. (2009) Establishment of pre-harvest residue limit (PHRL) of insecticide bifenthrin during cultivation of grape. Korean Journal of Pesticide Science, 13, 241-248.

[9]   FAO and WHO (2006) Pesticide residues in food 2005. Food & Agriculture Organization, 623-624.

[10]   Hrousková, S., Andra??iková, M., Abdel Ghani, S.B. and Purde?ová, A. (2012) Investigation of levels and fate of pyridalyl in fruit and vegetable samples by fast gas chromatography-mass spectrometry. Food Analytical Methods, in press. doi:10.1007/s12161-012-9508-1

 
 
Top