APM  Vol.3 No.2 , March 2013
On the Torsion Subgroups of Certain Elliptic Curves over Q

Let E be an elliptic curve over a given number field . By Mordells Theorem, the torsion subgroup of E defined over Q is a finite group. Using Lutz-Nagell Theorem, we explicitly calculate the torsion subgroup E(Q)tors for certain elliptic curves depending on their coefficients.

Cite this paper: Y. Park, "On the Torsion Subgroups of Certain Elliptic Curves over Q," Advances in Pure Mathematics, Vol. 3 No. 2, 2013, pp. 304-308. doi: 10.4236/apm.2013.32043.

[1]   B. Mazur, “Modular Curves and the Eisenstein Ideal,” Publications Mathématiques de l’Institut des Hautes études Scientifiques, No. 47, 1977, pp. 33-168.

[2]   A. Knapp, “Elliptic Curves,” Princeton University Press, Princeton, 1992.

[3]   D. Kim, J. K. Koo and Y. K. Park, “On the Elliptic Curves Modulo p,” Journal of Number Theory, Vol. 128, No. 4, 2008, pp. 945-953. doi:10.1016/j.jnt.2007.04.015