JEP  Vol.4 No.3 , March 2013
Evaluation of the Physicochemical Behavior of Waste Water Treatment Polyelectrolytes with Metal Ions
ABSTRACT
In this paper is describing the physicochemical behavior of polyelectrolytes (PEs) used in waste water treatment with mono-, di- and trivalent metal ions as K+, Mg2+, Zn2+, Fe3+, Sn2+, Cd2+, Pb2+, Cu2+, Ni2+, Al3+ and Cr3+. A coagulant polyelectrolyte Poly(vinyl sulfate) potassium salt (PVSK), and a commercial available Flocculant Trident 2756, were used as models for the study. The colloidal titration UV-Vis spectroscopy technique was successfully implemented in order to evaluate the complexation of PEs with Toluidine Blue O (OTB) and the ability of different metal ions to displace the OTB from the PE-OTB complex and form the PE-metal ion complex. From the experiments was concluded that PVSK has a high affinity for Al3+ and Mg2+ while the Flocculant has the highest affinity for Sn2+ followed by Zn2+and Mg2+. The absorbance profiles of polyelectrolyte-OTB complex (Absorbance vs. Metal/PE) were used to calculate association constants. On the other hand, the mass balance of OTB and its absorbance profiles were used to calculate the association constants of polyelectrolyte-metal ion complexes. Thus metal ions with the highest affinities have the highest association constant. Metal ions with the highest affinities present the highest values of association constant.


Cite this paper
E. Maldonado, M. Guzmán, G. Pina-Luis and A. Ochoa-Terán, "Evaluation of the Physicochemical Behavior of Waste Water Treatment Polyelectrolytes with Metal Ions," Journal of Environmental Protection, Vol. 4 No. 3, 2013, pp. 270-279. doi: 10.4236/jep.2013.43032.
References
[1]   A. E. Hatch, “Process of Treating Mycelia of Fungi for Retention of Metals,” US Patent 3859210, 1975.

[2]   B. L. Rivas and K. E. Geckeler, “Synthesis and Metal Complexation of Poly (Ethyleneimine) and Derivatives,” Advances in Polymer Science, Vol. 102, 1992, pp. 171-188. doi:10.1007/3-540-55090-9_6

[3]   H. F. Morawetz, “Specific Ion Binding by Polyelectrolytes,” Fortschr. Hochpolym.-Forsch, 1958, pp. 1-34.

[4]   R. D. Porasso and J. C. Benegas, “Chemical Bonding of Divalent Counterions to Linear Polyelectrolytes: Theoretical Treatment within the Counterion Condensation Theory,” Physical Chemistry Chemical Physics, Vol. 3, No. 6, 2001, pp. 1057-1062. doi:10.1039/b008401h

[5]   M. A. G. T. van den Hoop and J. C. Benegas, “Colloids and Surfaces A: Physicochemical and Engineering Aspects,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 170, No. 2-3, 2000, pp. 151-160.

[6]   R. D. Porasso, J. C. Benegas and M. A. G. T. van den Hoop, “Chemical and Electrostatic Association of Various Metal Ions by Poly (Acrylic Acid) and Poly (Methacrylic Acid) as Studied by Potentiometry,” The Journal of Physical Chemistry B, Vol. 103, No. 13, 1999, pp. 2361-2365. doi:10.1021/jp9839706

[7]   M. P. Fong, K. Pradeep and T. T. Tjoon, “Removal of Lead, Zinc and Iron by Coagulation-Flocculation,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 42, No. 5, 2011, pp. 809-815. doi:10.1016/j.jtice.2011.01.009

[8]   M. Borkovec, G. J. M. Koper and C. Piguet, “Ion Binding to Polyelectrolytes,” Current Opinion in Colloid & Interface Science, Vol. 11, No. 5, 2006, pp. 280-289. doi:10.1016/j.cocis.2006.08.004

[9]   B. Chaufer and A. Deratani, “Removal of Metal Ions by Complexation-Ultrafiltration Using Water-Soluble Macromolecules: Perspective of Application to Wastewater Treatment,” Nuclear and Chemical Waste Management, Vol. 8, No. 3, 1987, pp. 175-187. doi:10.1016/0191-815X(88)90025-3

[10]   H. H. G. Jellinek and S. P. Sangal, “Complexation of Metal Ions with Natural Polyelectrolytes (Removal and Recovery of Metal Ions from Polluted Waters),” Water Research, Vol. 6, No. 3, 1972, pp. 305-314. doi:10.1016/0043-1354(72)90008-5

[11]   H. P. Gregor, L. B. Luttinger and E. M. Loebl, “Metal-Polyelectrolyte Complexes. I. The Polyacrylic Acid-Copper Complex,” The Journal of Physical Chemistry, Vol. 59, No. 1, 1955, pp. 34-39. doi:10.1021/j150523a011

[12]   A. M. Kotliar and H. Morawetz, “Chelation of Copper(II) with Polyacrylic and Polymethacrylic Acid,” Journal of the American Chemical Society, Vol. 77, No. 14, 1955, pp. 3692-3695.. doi:10.1021/ja01619a005

[13]   H. Nishikawa and E. Tsuchida, “Complexation and Form of Poly (Vinylpyridine) Derivatives with Copper(II) in Aqueous Solution,” The Journal of Physical Chemistry, Vol. 79, No. 19, 1975, pp. 2072-2076. doi:10.1021/j100586a018

[14]   J. C. Leyte, L. H. Zuiderweg and M. V. Reisen, “Spectroscopic Study of Binuclear Copper Complexes in Aqueous Poly (Methacrylic Acid) Solutions,” The Journal of Physical Chemistry, Vol. 72, No. 4, 1968, pp. 1127-1132. doi:10.1021/j100850a007

[15]   H. S. Yokoi and I. M. Kawata, “Interaction Modes between Heavy Metal Ions and Water-Soluble Polymers. 2. Spectroscopic and Magnetic Reexamination of the Aqueous Solutions of Cupric Ions and Poly (Acrylic Acid),” Journal of the American Chemical Society, Vol. 108, No. 12, 1986, pp. 3361-3365. doi:10.1021/ja00272a034

[16]   A. M. Liquorio, F. Ascoli and C. Botré, “On the Electrostatic Interactions between Counterions and Macroions in Polyelectrolyte Solutions,” Journal of Polymer Science, Vol. 40, No. 136, 1959, pp. 169-178. doi:10.1002/pol.1959.1204013613

[17]   G. De Jong Hans, J. Lyklema and H. P. van Leeuwen, “Conductometric Analysis of the Competition between Monovalent and Divalent Counterions in Their Interaction with Polyelectrolytes,” Biophysical Chemistry, Vol. 27, No. 2, 1987, pp. 173-182. doi:10.1016/0301-4622(87)80056-X

[18]   L. R. Bernabé, N. Schiappacasse and L. A. Basáez, “Poly-electrolyte-Cu(II) Interactions Studied by Cyclic Voltammetry,” Polymer Bulletin, Vol. 45, No. 3, 2000, pp. 259-265. doi:10.1007/s002890070029

[19]   S. Peng and C. Wu, “Light Scattering Study of the Formation and Structure of Partially Hydrolyzed Poly(Acrylamide)/Calcium(II) Complexes,” Macromolecules, Vol. 32, No. 3, 1999, pp. 585-589. doi:10.1021/ma9809031

[20]   Y. Zhang, J. F. Douglas and B. D. J. Ermi, “Influence of Counterion Valency on the Scattering Properties of Highly Charged Polyelectrolyte Solutions,” Chemical Physics, Vol. 114, No. 7, 2001, pp. 3299-3313. doi:10.1063/1.1336148

[21]   L. R. Bernabé, S. A. Pooley and E. Pereira, “Water-Soluble Polymer Materials as Complexing Reagents for the Separation of Metal Ions Using Membrane Filtration,” Polymers for Advanced Technologies, Vol. 17, No. 11-12, 2006, pp. 865-871. doi:10.1002/pat.791

[22]   L. R. Bernabé, E. Pereira and I. M. Villoslada, “Water-Soluble Polymer-Metal Ion Interactions,” Progress in Polymer Science, Vol. 28, No. 2, 2003, pp. 173-208. doi:10.1016/S0079-6700(02)00028-X

[23]   Z. Iatridi and G. Bokias, “Formation of Ternary Poly (Acrylic Acid)-Surfactant-Cu2+Complexes in Aqueous Solution: Quenching of Pyrene Fluorescence and pH-Controlled ‘On-Off’ Emitting Properties,” Langmuir, Vol. 24, No. 20, 2008, pp. 11506-11513. doi:10.1021/la8019793

[24]   I. Nagata and Y. Okamoto, “Investigation on Ion Binding in Synthetic Polyelectrolyte Solutions Using Rare Earth Metal Fluorescence Probes,” Macromolecules, Vol. 16, No. 5, 1983, pp. 749-753. doi:10.1021/ma00239a009

[25]   E. A. López-Maldonado, A. Ochoa-Terán and M. T. Oropeza, “A Multiparameter Colloidal Titrations for the Determination of Cationic Polyelectrolytes,” Journal of Environmental Protection, Vol. 3, 2012, pp. 1559-1570.

[26]   M. Inoue, “Excel® Worksheets for Spectrometry,” Universidad de Sonora, Hermosillo, 2009.

 
 
Top