OJRad  Vol.3 No.1 , March 2013
Influence of Tomographic Slice Thickness and Field of View Variation on the Reproduction of Thin Bone Structures for Rapid Prototyping Purposes —An in Vitro Study

This study assessed the influence of acquisition parameters of tomographic volumes on the reproduction of thin bone structures for rapid prototyping purposes. Two parameters were investigated: Field of View (FOV) and Slice Thickness (ST). The specimen was comprised of five pairs of 0.6 mm, 1.1 mm, 1.5 mm, 2.0 mm and 2.8 mm thick cortical bone plates. The plates were stuck into utility wax; the first plate of the pair was in vertical position while the second plate was oblique to the first one. Forty-five tomographic images were captured and separated into 3 groups of fifteen images. Each group had a specific FOV: 180 mm; 250 mm and 430 mm, respectively. Within each of these three groups, tomographic slice thickness was varied for every five of the fifteen slices. Acquisitions were carried out with STs of 1 mm, 2.5 mm and 5 mm. The Cyclops Medical Station software was used in the voxel-to-voxel analysis of radiologic density, reaching a total of 1350 assessed images. ST and FOV variation influenced the reproduction of thin bone walls, and FOV was shown to be a very important parameter. The larger the acquisition FOV, the more reduction in the number of voxels within the range of reconstruction for cortical bone in all of the bone plates. The visual analysis of the images of very thin bone walls showed that there could be a sharp drop in the radiologic density value in several adjacent voxels, resulting in areas which might not be reproduced in the reconstruction.

Cite this paper
M. Meurer, K. Souza, A. Wangenheim, D. Abdala, L. de Souza Nobre, E. Meurer and J. Silva, "Influence of Tomographic Slice Thickness and Field of View Variation on the Reproduction of Thin Bone Structures for Rapid Prototyping Purposes —An in Vitro Study," Open Journal of Radiology, Vol. 3 No. 1, 2013, pp. 12-25. doi: 10.4236/ojrad.2013.31003.
[1]   L. N. J. Mankovich, A. M. Cheeseman and N. G. Stoker, “The Display of Three-Dimensional Anatomy with Stereolithographic Models,” Journal of Digital Imaging, Vol. 3, No. 3, 1990, pp. 200-203. doi:10.1007/BF03167610

[2]   J. Asaumi, N. Kawai, Y. Honda, H. Shigehara, T. Wakasa and K. Kishi, “Comparison of Three-Dimensional Computed Tomography with Rapid Prototype Models in the Management of Coronoid Hyperplasia,” Dentomaxillofacial Radiology, Vol. 30, No. 6, 2001, pp. 330-335. doi:10.1038/sj.dmfr.4600646

[3]   T. M. Barker, W. J. S. Earwaker and D. A. Lisle, “Accuracy of Stereolithographic Models of Human Anatomy,” Australasian Radiology, Vol. 38, No. 2, 1994, pp. 106 111. doi:10.1111/j.1440-1673.1994.tb00146.x

[4]   P. S. D’Urso, R. L. Atkinson, M. W. Lanigan, W. J. Earwaker, I. J. Bruce, A. Holmes, T. M. Barker, D. J. Effeney and R. G. Thompson, “Stereolithographic (SL) Bio modelling in Craniofacial Surgery,” British Journal of Plastic Surgery, Vol. 51, No. 7, 1998, pp. 522-530. doi:10.1054/bjps.1998.0026

[5]   C. Kermer, A. Lindner, I. Friede, A. Wagner and W. Millesi, “Preoperative Stereolithographic Model Planning for Primary Reconstruction in Craniomaxillofacial Trauma Surgery,” Journal of Cranio-Maxillofacial Surgery, Vol. 26, No. 3, 1998, pp. 136-139. doi:10.1016/S1010-5182(98)80002-4

[6]   G. Santler, H. K?rcher and C. Ruda, “Indications and Li mitations of Three-Dimensional Models in Cranio-Ma xillofacial Surgery,” Journal of Cranio-Maxillofacial Surgery, Vol. 26, No. 1, 1998, pp. 11-16. doi:10.1016/S1010-5182(98)80029-2

[7]   R. Sch?n, M. C. Metzger, C. Zizelmann, N. Weyer and R. Schmelzeisen, “Individually Preformed Titanium Mesh Implants for a True-To-Original Repair of Orbital Fractures,” International Journal of Oral and Maxillofacial Surgery, Vol. 35, No. 11, 2006, pp. 990-995. doi:10.1016/j.ijom.2006.06.018

[8]   E. K. Sannomiya, J. V. L. Silva, A. A. Brito, D. M. Saez, F. Angelieri and G. S. Dalben, “Surgical Planning for Resection of an Ameloblastoma and Reconstruction of the Mandible Using a Selective Laser Sintering 3D Biomodel,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, Vol. 106, No. 1, 2008, pp. e36-e40. doi:10.1016/j.tripleo.2008.01.014

[9]   G. Wang, J. Li, A. Khadka, Y. Hsu, W. Li and J. Hu, “CAD/CAM and Rapid Prototyped Titanium for Reconstruction of Ramus Defect and Condylar Fracture Caused by Mandibular Reduction,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, Vol. 113, No. 3, 2012 pp. 356-361. doi:10.1016/j.tripleo.2011.03.034

[10]   A. L. Rosenfeld, G. A. Mandelaris and P. B. Tardieu, “Prosthetically Directed Implant Placement Using Computer Software to Ensure Precise Placement and Predictable Prosthetic Outcomes. Part 2: Rapid-Prototype Medical Modeling and Stereolithographic Drilling Guides Requiring Bone Exposure,” The International Journal of Periodontics & Restorative Dentistry, Vol. 26, No. 4, 2006, pp. 347-353.

[11]   K. Lal, G. S. White, D. N. Morea and R. F. Wright, “Use of Stereolithographic Templates for Surgical and Prosthodontic Implant Planning and Placement. Part I. The Concept,” Journal of Prosthodontics, Vol. 15, No. 1, 2006, pp. 51-58. doi:10.1111/j.1532-849X.2006.00069.x

[12]   D. P. Sarment, P. Sukovic and N. Clinthorne, “Accuracy of Implant Placement with a Stereolithographic Surgical Guide,” The International Journal of Oral & Maxillofacial Implants, Vol. 18, No. 4, 2003, pp. 571-577.

[13]   V. N. Viegas, V. Dutra, R. M. Pagnoncelli and M. G. Oliveira, “Transference of Virtual Planning and Planning over Biomedical Prototypes for Dental Implant Placement Using Guided Surgery,” Clinical Oral Implants Research, Vol. 21, No. 3, 2010, pp. 290-295. doi:10.1111/j.1600-0501.2009.01833.x

[14]   N. Sudarmadji, C. K. Chua and K. F. Leong, “The Development of Computer-Aided System for Tissue Scaffolds (CASTS) System for Functionally Graded Tissue Engineering Scaffolds,” Methods in Molecular Biology, Vol. 868, 2012, pp. 111-123. doi:10.1007/978-1-61779-764-4_7

[15]   N. E. Fedorovich, J. Alblas, W. E. Hennink, F. C. Oner and W. J. Dhert, “Organ Printing: The Future of Bone Regeneration?” Trends in Biotechnology, Vol. 29, No. 12, 2011, pp. 601-606. doi:10.1016/j.tibtech.2011.07.001

[16]   A. Díaz Lantada and P. Lafont Morgado, “Rapid Prototyping for Biomedical Engineering: Current Capabilities and Challenges,” Annual Review of Biomedical Engineering, Vol. 14, 2012, pp. 73-96. doi:10.1146/annurev-bioeng-071811-150112

[17]   J. Winder and R. Bibb, “Medical Rapid Prototyping Tech nologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery,” Journal of Oral and Maxillofacial Surgery, Vol. 63, No. 7, 2005, pp. 1006-1015. doi:10.1016/j.joms.2005.03.016

[18]   J. Y. Choi, J. H. Choi, N. K. Kim, Y. Kim, J. K. Lee, M. K. Kim, J. H. Lee and M. J. Kim, “Analysis of Errors in Medical Rapid Prototyping Models,” International Journal of Oral and Maxillofacial Surgery, Vol. 31, No. 1, 2002, pp. 23-32. doi:10.1054/ijom.2000.0135

[19]   P. S. Chang, T. H. Parker, C. W. Patrick Jr. and M. J. Miller, “The Accuracy of Stereolithography in Planning Craniofacial Bone Replacement,” Journal of Cranio-Maxil lofacial Surgery, Vol. 14, No. 2, 2003, pp. 164-170.

[20]   H. Eufinger, M. Wehmoller, A. Harders and L. Heuser, “Prefabricated Prostheses for the Reconstruction of Skull Defects,” International Journal of Oral and Maxillofacial Surgery, Vol. 24, No. 1, 1995, pp. 104-110. doi:10.1016/S0901-5027(05)80870-7

[21]   A. J. Lightman, “Image Realization: Physical Anatomical Models from Scan Data,” Proceedings SPIE, The International Society for Optics and Photonics, Vol. 3335, 1998, pp. 691-694.

[22]   M. C. Metzger, R. Sch?n, R. Tetzlaf, N. Weyer, A. Rafii, N. C. Gellrich and R. Schmelzeisen, “Topographical CT Data Analysis of the Human Orbital Floor,” International Journal of Oral and Maxillofacial Surgery, Vol. 36, No. 1, 2007, pp. 45-53. doi:10.1016/j.ijom.2006.07.013

[23]   I. Ono, H. Gunji, K. Suda and F. Kaneko, “Method for Preparing an Exact-Size Model Using Helical Volume Scan Computed Tomography,” Plastic and Reconstructive Surgery, Vol. 93, No. 7, 1994, pp. 1363-1371. doi:10.1097/00006534-199406000-00005

[24]   J. B. Ahlqvist and A. M. Isberg, “Validity of Computed Tomography in Imaging Thin Walls of the Temporal Bone,” Dentomaxillofacial Radiology, Vol. 28, No. 1, 1999, pp. 13 19. doi:10.1038/sj.dmfr.4600398

[25]   J. Schneider, R. Decker and W.A. Kalender, “Accuracy in Medical Modeling,” Phidias Newsletter, Vol. 8, 2002, pp. 5-14.

[26]   J. Kragskov, S. Sindet-Pedersen, C. Gyldensted and K. L. Jensen, “A Comparison of Three-Dimensional Computed Tomography Scans and Stereolithographic Models for Evaluation of Craniofacial Anomalies,” Journal of Oral and Maxillofacial Surgery, Vol. 54, No. 4, 1996, pp. 402 411. doi:10.1016/S0278-2391(96)90109-3

[27]   H. O. Wegener, “Whole Body Computerized Tomography,” 2nd Edition, Wiley-Blackwell, Hoboken, 1992.

[28]   D. Carvalho, T. R. Santos and A. von Wangenheim, “Meas uring Arterial Diameters for Surgery Assistance, Patient Customized Endovascular Prosthesis Design and Post Surgery Evaluation,” 19th IEEE International Symposium on Computer-Based Medical Systems, Salt Lake City, 22 23 June 2006, pp. 225-230.

[29]   B. Tani, T. Nóbrega, T. R. Santos and A. von Wangenheim, “Generic Visualization and Manipulation Framework for Three-Dimensional Medical Environments,” 19th IEEE International Symposium on Computer-Based Medical Systems, Salt Lake City, 22 23 June 2006, pp. 27-31.

[30]   W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, ACM Magazines and Online Publications, New York, 1987, pp. 163-169.

[31]   E. Akleman and J. Chen, “Guaranteeing the 2-Manifold Property for Meshes with Doubly Linked Face List,” International Journal of Shape Modeling, Vol. 5, No. 2, 2000, pp. 149-177.