JMP  Vol.4 No.3 , March 2013
High-Frequency Electrostatic SW at the Boundary between Quantum Plasma and Metal
ABSTRACT

It is shown that high-frequency electrostatic surface waves (SW) could be propagated at right angles to an external magnetic field on the boundary between metal and gaseous plasma due to a finite pressure electron gas in quantum plasma by using the quantum hydrodynamic QHD equations. The dispersion relation for those surface waves in uniform electron plasma is derived under strong external magnetic field. We have shown that the electrostatic surface waves exist also in the frequency for the ranges where electromagnetic SW is impossible. The surface plasma modes are numerically evaluated for the specific case of gold metallic plasma at room temperature. It has been found that dispersion relation of surface modes depends significantly on these quantum effects (Bohm potential and statistical) and should be into account in the case of magnetized or unmagnetized plasma.


Cite this paper
B. Mohamed and R. Albrulosy, "High-Frequency Electrostatic SW at the Boundary between Quantum Plasma and Metal," Journal of Modern Physics, Vol. 4 No. 3, 2013, pp. 327-330. doi: 10.4236/jmp.2013.43044.
References
[1]   Y. D. Jung, “Quantum-Mechanical Effects on Electron-Electron Scattering in Dense High-Temperature Plasmas,” Physics of Plasmas, Vol. 8, No. 3842, 2001, pp. 3842-3845. doi:10.1063/1.1386430

[2]   D. Kremp, M. Schlanges and W. D. Kraft, “Quantum Statistics of Nonideal Plasmas,” Springer, Berlin, 2005.

[3]   A. V. Andreev, “Self-Consistent Equations for the Interaction of an Atom with an Electromagnetic Field of Arbitrary Intensity,” JETP Letters, Vol. 72, No. 5, 2000, pp. 238-240. doi:10.1134/1.1324018

[4]   M. Marklund and P. K. Shukla, “Nonlinear Collective Effects in Photon-Photon and Photon-Plasma Interactions,” Reviews of Modern Physics, Vol. 78, No. 2, 2006, pp. 591-640. doi:10.1103/RevModPhys.78.591

[5]   P. A. Markowich, C. A. Ringhofer and C. Schmeiser, “Semiconductor Equations,” Springer-Verlag, New York, 1990. doi:10.1007/978-3-7091-6961-2

[6]   G, V. Shpatakovskaya, “Semiclassical Model of a One-Dimensional Quantum Dot,” Journal of Experimental and Theoretical Physics, Vol. 102, No. 3, 2006, pp. 466-474. doi:10.1134/S1063776106030095

[7]   L. Wei and Y.-N. Wang, “Quantum Ion-Acoustic Waves in Single-Walled Carbon Nanotubes Studied with a Quantum Hydrodynamic Model,” Physical Review B, Vol. 75, No. 19, 2007, pp. 193407-193407. doi:10.1103/PhysRevB.75.193407

[8]   L. K. Ang, “Simple Derivation of Quantum Scaling in Child-Langmuir Law,” IEEE Transactions on Plasma Science, Vol. 32, No. 2, 2004, pp. 410-412. doi:10.1109/TPS.2004.826366

[9]   D. E. Chang, A. S. Sorensen, P. R. Hemmer and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Physi- cal Review Letters, Vol. 97, 2006, pp. 053002-053006.

[10]   T. C. Killian, “Experiments in Botany,” Nature (London), Vol. 441, 2006, p. 298. doi:10.1038/441298a

[11]   K. Becker, K. Koutsospyros, S. M. Yin, et al., “Environmental and Biological Applications of Microplasmas,” Plasma Physics and Controlled Fusion, Vol. 47, No. 12B, 2005, pp. B513-B524. doi:10.1088/0741-3335/47/12B/S37

[12]   G. Manfredi, “How to Model Quantum Plasmas,” Fields Institute Communications, Vol.46, 2005, pp. 263-287.

[13]   S. H. Glenzer, et al., “Observations of Plasmons in Warm Dense Matter,” Physical Review Letters, Vol. 98, No. 6, 2007, pp. 065002-065006. doi:10.1103/PhysRevLett.98.065002

[14]   S. Ali and P. K. Shukla, “Streaming Instability in Quantum Dusty Plasmas,” European Physical Journal, Vol. D41, 2007, pp. 319-324.

[15]   M. Lazar, P. K. Shukla and A. Smolyakov, “Surface Waves on a Quantum Plasma Half-Space,” Physics of Plasmas, Vol. 14, No. 12, 2007, pp. 124501. doi:10.1063/1.2825278

[16]   B. F. Mohamed, “Quantum Effects on the Propagation of Surface Waves in Magnetized Plasma,” Physica Scriptav, Vol. 82, No. 6, 2010, pp. 065502-065506, doi:10.1088/0031-8949/82/06/065502

[17]   B. F. Mohamed and M. Abdel Aziz, “Propagation of TE- Surface Waves on Semi-Bounded Quantum Plasma,” International Journal of Plasma Science and Engineering, Vol. 2010, 2010, pp. 693049-693053. doi:10.1155/2010/693049

[18]   G. Manfredi and F. Haas, “Self-Consistent Fluid Model for a Quantum Electron Gas,” Physical Review B, Vol. 64, No. 7, 2001, pp. 075316-075323. doi:10.1103/PhysRevB.64.075316

[19]   F. Haas, L. G. Garcia, J. Goedert and G. Manfredi, “Quantum Ion-Acousic Waves,” Physics of Plasmas, Vol. 10, No. 10, 2003, pp. 3858-3866. doi:10.1063/1.1609446

 
 
Top