[1] Alonso, M.I., Gato, A., Moro, J.A., Martin, P. and Barbosa, E. (1999) Involvement of sulfated proteoglycans in embryonic brain expansion at earliest stages of development in rat embryos. Cells Tissues Organs 165(1), 1-9.
[2] Alonso, M.I., Gato, A., Moro, J.A. and Barbosa, E. (1998) Disruption of proteoglycans in neural tube fluid by D-xyloside alters brain enlargement in chick embryos. The Anatomical Record Part A, 252(4), 499-508.
[3] Desmond, M.E. and Jacobson, A.G. (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Developmental Biology, 57(1), 118-198.
[4] Jelinek, R. and Pexieder, T. (1970) Pressure of the CNS in chick embryo. Folia morphologica, 2, 102-110.
[5] Miyan, J.A., Nabiyouni, M. and Zendah, M. (2003) Development of the brain: A vital role for cerebrospinal fluid. Canadian Journal of Physiology and Pharmacology, 81(4), 317-328.
[6] Gato, A. and Desmond, M.E. (2009) Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Development Biology, 327(2), 263- 272.
[7] Gato, A., Moro, J.A., Alonso, M.I., Bueno, D., De La Mano, A. and Martin. C. (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryo. The Anatomical Record Part A, 284(1), 475- 484.
[8] Parada, C., Martín, C., Alonso, M.I., Moro, J.A., Bueno, D. and Gato, A. (2005) Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression. Journal of Neuroscience Research, 82(3), 333-345.
[9] Hamburger, V. and Hamilton, H.L. (1951) A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49-92.
[10] Parada, C., Gato, A. and Bueno, D. (2005) Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. Journal of Proteome Research, 4(6), 2420- 2428.
[11] Parada, C., Gato, A., Aparicio, M. and Bueno, D. (2006) Proteome analysis of chick embryonic cerebro-spinal fluid. Proteomics, 6(1), 1-34.
[12] Zappaterra, M.D., Lisgo, S.N., Lindsay, S., Gygi, S.P., Walsh, C.A. and Ballif, B.A. (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. Journal of Proteomic Research, 6(9), 3537-3548.
[13] Parada, C., Parvas, M. and Bueno, D. (2007) Cerebrospinal fluid proteomes: from neural development to neurodegenerative diseases. Current Proteomics, 4, 89-106.
[14] Parvas, M., Rius, M. and Bueno, D. (2008) Most of the abundant protein fractions of embryonic cerebrospinal fluid are produced out of the brain anlagen. The Open Proteomics Journal, 1, 1-4.
[15] Parvas, M., Parada, C. and Bueno, D. (2008) A blood–CSF barrier function controls embryonic CSF protein composition and homeostasis during early CNS development. Developmental Biology, 321(1), 51-63.
[16] Parvas, M. and Bueno, D. (2010) The embryonic blood-CSF barrier controls E-CSF osmolarity during early CNS development. The Journal of Neuroscience Research, 88(6), 1205-1212.
[17] Rubin, L.L. and Staddon, J.M. (1999) The cell biology of the blood brain barrier. The Annual Review of Neuroscience, 22, 11-28.
[18] Frank, P.G., Woodman, S.E., Park, D.S. and Lisanti, M.P. (2003) Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1161-1168.
[19] Virgintino, D., Robertson, D., Errede, M., Benagiano, V., Taure, U., Roncali, L. and Bertossi, M. (2002) Expression of caveolin-1 in human brain microvessels. Neroscience, 115(1), 145-152.
[20] Dermeitzel, R. and Krause, D. (1991) Molecular anatomy of the blood brain barrier as defined by immunocytochemistry. In: Jeon, K.W. and Friedlander, M. Eds., International review of cytology. Academic Press, New York, 57-109.
[21] Laterra, J. and Goldstein, G.W. (1993) Brain microvessels and microvascular cells in vitro. In: Pardridge, W.M. Eds., The blood-brain barrier, Raven Press, New York, 1-24.
[22] Pardridge, W.M. and Boado, R.J. (1993) Molecular cloning and regulation of gene expression of blood-brain barrier glucose transporter. In: Pardridge, W.M. Eds., The blood-brain barrier, Raven Press, New York, 395-440.
[23] Rahner-Welsch, S., Vogel, J. and Kuschinsky, W. (1995) Regional congruence and divergence of glucose transporters (GLUT1) and capillaries in rat brains. Journal of Cerebral Blood Flow & Metabolism, 15, 681-686.
[24] Bellairs, R. and Osmond, M. (2005) Atlas of Chick Development. Elsevier Academy Press, London.
[25] Dermietzel, R., Krause, D., Kremes, M., Wang, C. and Stevenson, B. (1992) Pattern of glucose transporter (Glut1) expression in embryonic brains is related to maturation of blood-brain barrier tightness. Developmental Dynamics, 193, 152-163.
[26] Harik, S.I., Hall, A.K., Richey, P., Andersson, L., Lundahl, P. and Perry, G. (1993) Ontogeny of the erythroid/ HepG2-type glucose transporter (GLUT-1) in the rat nervous system. Developmental Brain Research, 72, 41- 49.
[27] Bauer, H., Sonnleitner, U., Lametschwandter, A., Steiner, M., Adam, H. and Bauer, H.C. (1995) Ontogenic expression of the erythroid-type glucose transporter (Glut1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Developmental Brain Research, 86(1-2), 317-325.
[28] Laemmli, U.K, (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.