S1-Equivariant CMC Surfaces in the Berger Sphere and the Corresponding Lagrangians

Keiichi Kikuchi^{*}

Show more

References

[1] W-Y. Hsiang, “On Generalization of Theorems of A. D. Alexandrov and C. Delaunay on Hypersurfaces of Constant Mean Curvature,” Duke Mathematical Journal, Vol. 49, No. 3, 1982, pp. 485-496.
doi:10.1215/S0012-7094-82-04927-4

[2] J. Eells and A. Ratto, “Harmonic Maps and Minimal Immersions with Symmetries,” Annals of Mathematics Stu- dies, No. 130, 1993.

[3] K. Kikuchi, “The Construction of Rotation Surfaces of Constant Mean Curvature and the Corresponding Lagrangians,” Tsukuba Journal of Mathematics, Vol. 36, No. 1, 2012, pp. 43-52.

[4] W-Y. Hsiang and H. B. Lawson, “Minimal Submanifolds of Low Cohomogeneity,” Journal of Differential Geometry, Vol. 5, 1971, pp. 1-38.

[5] D. Ferus and U. Pinkall, “Constant Curvature 2-Spheres in the 4-Sphere,” Mathematische Zeitschrift, Vol. 200, No. 2, 1989, pp. 265-271. doi:10.1007/BF01230286

[6] H. Muto, Y. Ohnita and H. Urakawa, “Homogeneous Minimal Hypersurfaces in the Unit Spheres and the First Eigenvalues of Their Laplacian,” Tohoku Mathematical Journal, Vol. 36, No. 2, 1984, pp. 253-267.
doi:10.2748/tmj/1178228851

[7] P. Petersen, “Riemannian Geometry,” Graduate Texts in Mathematics, 2nd Edition, Vol. 171, Springer-Verlag, New York, 2006.