MSA  Vol.4 No.2 , February 2013
Electro-Oxidation of Glucose in Alkaline Media on Graphene Sheets Decorated with Gold Nanoparticles
ABSTRACT

In this study the catalytic properties of gold nanoparticles in electro-oxidation process of glucose, were investigated, taking into account, an influence of catalyst composition. Graphene oxide was applied and for electro-oxidation studies of glucose, cyclic voltamperometry was used. It was found that an application of graphene oxide sheets during catalyst synthesis have an influence on gold nanoparticles (AuNPs) size and size distribution. It was confirmed that the application of composite catalyst consisting of graphane-AuNPs significantly changes electro-oxidation of glucose shifting the potential of oxidation to higher positive values and increasing oxidation current.


Cite this paper
M. Wojnicki, M. Luty-Błocho, I. Dobosz, J. Grzonka, K. Pacławski, K. Kurzydłowski and K. Fitzner, "Electro-Oxidation of Glucose in Alkaline Media on Graphene Sheets Decorated with Gold Nanoparticles," Materials Sciences and Applications, Vol. 4 No. 2, 2013, pp. 162-169. doi: 10.4236/msa.2013.42019.
References
[1]   S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Ngu yen and R. S. Ruoff, “Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Sty renesulfonate),” Journal of Materials Chemistry, Vol. 16, 2006, pp. 155-158.

[2]   M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara and M. Ohba, “Thin-Film Particles of Graphite Oxide 1: High Yield Synthesis and Flexibility of the Particles,” Carbon, Vol. 42, No. 14, 2004, pp. 2929-2937.

[3]   S. Stankovich, R. D. Pine, S. T. Nguyen and R. S. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon, Vol. 44, No. 15, 2006, pp. 3342-3347.

[4]   B. C. Brodie, “On the Atomic Weight of Graphite,” Philosophical Transactions, Vol. 149, 1859, pp. 249-259.

[5]   W. Hummers and R. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, 1958, pp. 1339-1339. doi:10.1021/ja01539a017

[6]   á. Mastalira, Z. Királyb, á. Patzkób, I. Dékányb and P. L’Argentierec, “Synthesis and Catalytic Application of Pd Nanoparticles in Graphite Oxide,” Carbon, Vol. 46, No. 13, 2008, pp. 1631-1637.

[7]   B. Hvolb?k, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen and J. K. N?rskov, “Catalytic Activity of Au Nanoparticles,” Nanotoday, Vol. 2, No. 4, 2007, pp. 14-18. doi:10.1016/S1748-0132(07)70113-5

[8]   J. Hernández, J. Solla-Gullón, E. Herrero, A. Aldaz and J. M. Feliu, “Methanol Oxidation on Gold Nanoparticles in Alkaline Media: Unusual Electrocatalytic Activity,” Electrochemica Acta, Vol. 52, No. 4, 2006, pp. 1662-1669.

[9]   I.-S. Park, K.-S. Lee, D.-S. Jung, H.-Y. Park and Y.-E. Sung, “Electrocatalytic Activity of Carbon-Supported Pt Au Nanoparticles for Methanol Electro-Oxidation,” Elec trochemica Acta, Vol. 52, No. 18, 2007, pp. 5599-5605.

[10]   G. J. Hutchings, S. Carrettin, P. Landon, J. K. Edwards, D. Enache, D. W. Knight, Y.-J. Xu and A. F. Carley, “New Approaches to Designing Selective Oxidation Catalysts: Au/C a Versatile Catalyst,” Topics in Catalysis, Vol. 38, No. 4, 2006, pp. 223-230. doi:10.1007/s11244-006-0020-y

[11]   D. Geng and G. Lu, “Size Effect of Gold Nanoparticles on the Electrocatalytic Oxidation of Carbon Monoxide in Alkaline Solution,” Journal of Nanoparticle Research, Vol. 9, No. 6, 2007, pp. 1145-1151.

[12]   D. A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat and L. Kiwi-Minsker, “Highly Dispersed Gold on Acti vated Carbon Fibers for Low-Temperature CO Oxida tion,” Journal of Catalysis, Vol. 224, No. 1, 2004, pp. 8-17.

[13]   E. Mohammad and M. Norita, “Electrooxidation of Eth ylene Glycol Using Gold Nanoparticles Electrodeposited on Pencil Graphite in Alkaline Medium,” Science China Chemistry, Vol. 55, No. 2, 2012, pp. 247-255. doi:10.1007/s11426-011-4402-z

[14]   M. Luty-B?ocho, K. Fitzner, V. Hessel, P. L?b, M. Mas kos, D. Metzke, K. Pac?awski and M. Wojnicki, “Synthe sis of Gold Nanoparticles in an Interdigital Micromixer Using Ascorbic Acid and Sodium Borohydride as Reduc ers,” Chemical Engineering Journal, Vol. 171, No. 1, 2011, pp. 279-290.

[15]   B. Streszewski, W. Jaworski, K. Pac?awski, E. Csapó, I. Dékány and K. Fitzner, “Gold Nanoparticles Formation in the Aqueous System of Gold(III) Chloride Complex Ions and Hydrazine Sulfate—Kinetic Studies,” Colloids and Surfaces A, Vol. 397, 2012, pp. 63-72.

[16]   M. A. Montero, M. R. G. de Chialvo and A. C. Chialvo, “Preparation of Gold Nanoparticles Supported on Glassy Carbon by Direct Spray Pyrolysis,” Journal of Materials Chemistry, Vol. 20, 2009, pp. 3276-3280.

[17]   F. Mafune, J. Kohno, Y. Takeda and T. Kondow, “Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant,” The Journal of Physical Che mistry B, Vol. 22, No. 105, 2001, pp. 5114-5120. doi:10.1021/jp0037091

[18]   L. H. Bac, J. S. Kim and J. C. Kim, “Size, Optical and Stability Properties of Gold Nanoparticles Synthesized by Electrical Explosion of Wire in Different Aqueous Me dia,” Reviews on Advanced Materials Science, Vol. 28, 2011, pp. 117-121.

[19]   P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape and Composition: Applications in Biological Imaging and Biomedicine,” The Journal of Physical Chemistry B, Vol. 110, No. 14, 2006, pp. 7238-7248.

[20]   I. T. Bae and E. Yeager, “In Situ Infrared Studies of Glu cose Oxidation on Platinum in an Alkaline Medium,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 309, No. 1-2, 1991, pp. 131-145. doi:10.1016/0022-0728(91)87009-S

[21]   J. M. H. Dirkx and H. S. van der Baan, “The Oxidation of Glucose with Platinum on Carbon as Catalyst,” Journal of catalysis, Vol. 67, No. 1, 1981, pp. 1-13. doi:10.1016/0021-9517(81)90256-6

[22]   S. Karski, T. Paryjczak, J. Rynkowski and I. Witońska, “Catalytic Oxidation of Glucose on Supported Palladium Catalysts,” Polish Journal of Chemical Technology, Vol. 2, No. 1, 2000, pp. 10-13.

[23]   J. Chen, C. X. Zhao, M. M. Zhi, K. Wang, L. Deng and G. Xu, “Alkaline Direct Oxidation Glucose Fuel Cell System Using Silver/Nickel Foams as Electrodes,” Electrochi mica Acta, Vol. 66, 2012, pp. 133-138.

[24]   D. Basu and S. Basu, “A Study on Direct Glucose and Fructose Alkalinefuelcell,” Electrochimica Acta, Vol. 55, No. 20, 2010, pp. 5775-5779. doi:10.1016/j.electacta.2010.05.016

[25]   M. Pasta, R. Ruffo, E. Falletta, C. M. Mari and C. D. Pina, “Alkaline Glucose Oxidation on Nanostructured Gold Electrodes,” Gold Bulletin, Vol. 43, No. 1, 2010, pp. 57 64. doi:10.1007/BF03214967

[26]   S. Zhao, K. Zhang, Y. Bai, W. Yang and C. Sun, “Glu cose Oxidase/Colloidal Gold Nanoparticles Immobilized in Nafion Film on Glassy Carbon Electrode: Direct Elec tron Transfer and Electrocatalysis,” Bioelectrochemistry, Vol. 69, No. 2, 2006, pp. 158-163.

[27]   S. Ogawa and S. Ino, “Formation of Multiply-Twinned Particles on Alkali Halide Crystals by Vacuum Evapora tion and Their Structures,” Journal of Crystal Growth, Vol. 13-14, No. 48-56, 1972, p. 48.

[28]   T. Oku and K. Hiraga, “Atomic Structures and Stability of Hexagonal BN, Diamond and Au Multiply-Twinned Nanoparticles with Five-Fold Symmetry,” Diamond and Related Materials, Vol. 10, No. 3-7, 2000, pp. 1398-1403.

[29]   H. P. Boehm, “Surface Oxides on Carbon and Their Analysis: A Critical Assessment,” Carbon, Vol. 40, No. 2, 2002, pp. 145-149.

[30]   D. Feng, F. Wang and Z. Chen, “Electrochemical Glucose Sensor Based on One-Step Construction of Gold Nano particle-Chitosan Composite Film,” Sensors and Actua tors B: Chemical, Vol. 139, No. 2, 2009, pp. 539-544.

[31]   M. Pasta, F. L. Mantia and Y. Cuib, “Mechanism of Glu cose Electrochemical Oxidation on Gold Surface,” Elec trochemica Acta, Vol. 55, No. 20, 2010, pp. 5561-5568.

[32]   X. Liu, M. Atwater, J. H. Wang and Q. Huo, “Extinction Coefficient of Gold Nanoparticles with Different Sizes and Different Capping Ligands,” Colloids and Surfaces B: Biointerfaces, Vol. 58, No. 1, 2007, pp. 3-7. doi:10.1016/j.colsurfb.2006.08.005

 
 
Top