MSA  Vol.4 No.2 , February 2013
Growth, Microstructure and Electrochemical Properties of RF Sputtered LiMn2O4 Thin Films on Au/Polyimide Flexible Substrates
ABSTRACT

LiMn2O4 thin films are deposited on gold coated polyimide flexible substrates using RF magnetron sputtering technique maintained at a moderate substrate temperature of 300. The films exhibited characteristic peaks with predominant (111) orientation representing cubic spinel structure of Fd3m symmetry with an evaluated lattice parameter of 8.199 ?. The surface topography of films exhibited pyramidal shaped grains oriented vertical to the substrate surface with root mean square surface roughness of 90 nm. The Pt/LiMn2O4 electrochemical cell in aqueous region exhibited two step de-insertion and insertion kinetics of Li ion during oxidation and reduction reaction with an initial discharge capacity of 36 μAh?cm_2?μm_1.


Cite this paper
K. Babu, P. Kumar and O. Hussain, "Growth, Microstructure and Electrochemical Properties of RF Sputtered LiMn2O4 Thin Films on Au/Polyimide Flexible Substrates," Materials Sciences and Applications, Vol. 4 No. 2, 2013, pp. 128-133. doi: 10.4236/msa.2013.42014.
References
[1]   K.-L. Lee, J.-Y. Jung, S.-W. Lee, H.-S. Moon, J.-W. Park, “Electrochemical Characteristics and Cycle Performance of LiMn2O4/a-si Microbattery,” Journal of Power Sources, Vol. 130, No. 1-2, 2004, pp. 241-246. doi:10.1016/j.jpowsour.2003.11.059

[2]   W. W. Sun, F. Cao, Y. M. Liu, X. Z. Zhao, X. G. Liu and J. K. Yuan, “Nonporous LiMn2O4 Nanosheets with Exposed (111) Facets as Cathodes for Highly Reversible Lithium-Ion Batteries,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 20952-20957. doi:10.1039/c2jm32658b

[3]   C. Y. Sun, H. Y. Yang, J. Xie, G. S. Cao, X. B. Zhao, T. J. Zhu, “Nanoparticles-Assembly of LiMn2O4 Hollow Mi crospheres with Improved Rate Capability and Cycleabi lity for Lithium Ion Batteries,” International Journal of Electrochemical Science, Vol. 7, No. 7, 2012, pp. 6191 6201.

[4]   Y. Kim, J. Lim and S. Kang, “Investigation on the Disso lution of Mn Ions from LiMn2O4 Cathode in the Applica tion of Lithium Ion Batteries: First Principle Molecular Orbital Method,” International Journal of Quantum Chemistry, Vol. 113, No. 2, 2012, pp. 148-154. doi:10.1002/qua.24314

[5]   S. Komaba, N. Kumugai, M. Baba, F. Miura, N. Fujita, H. Groult, D. Devilliers and B. Kaplan, “Preparation of Li-Mn-O Thinfilms by r.f-Sputtering Method and Its Ap plication to Rechargeable Batteries,” Journal of Applied Electrochemistry, Vol. 30, No. 10, 2000, pp. 1179-1182. doi:10.1023/A:1004047614084

[6]   C. C. Chen, K.F. Chiu, K. M. Lin, H. C. Lin, C.-R. Yang and F. M. Wang, “Combinational Effects of Oxygen Plasma Irradiation and Annealing on LiMn2O4 Thinfilm Cathodes,” Journal of Electrochemical Science, Vol. 158, No. 3, 2011, pp. A262-A265. doi:10.1149/1.3531988

[7]   A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. van Schalkwijk, “Nanostructured Materials for Advanced Energy Conversion and Storage Devices,” Nature Mate rials, Vol. 4, 2005, pp. 366-367. doi:10.1038/nmat1368

[8]   S. Y. Chung, J. T. Bloking and Y. M. Chiang, “Electro nically Conductive Phospho-Olivines as Lithium Stor age Electrodes,” Nature Materials, Vol. 1, 2002, pp. 123 128. doi:10.1038/nmat732

[9]   P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, “High Rate Capabilities Fe3O4-Based Cu Nano Architectured Electrodes for Lithium-Ion Battery Appli cations,” Nature Materials, Vol. 5, 2006, pp. 567-573. doi:10.1038/nmat1672

[10]   H. Li, Z. Wang, L. Chen and X. Huang, “Research on Advanced Materials for Li-Ion Batteries,” Advanced Materials, Vol. 21, No. 45, 2009, pp. 4593-4607. doi:10.1002/adma.200901710

[11]   P. Bruce, B. Scrosati and J. M. Tarascon, “Nanomaterials for Rechargeable Lithium Betteries,” Angewandte Chemie International Edition, Vol. 47, No. 16, 2008, pp. 2930 2946. doi:10.1002/anie.200702505

[12]   Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, “Electrochemical Energy Storage for Green Grid,” Chemical Reviews, Vol. 111, No. 5, 2011, pp. 3577-3614. doi:10.1021/cr100290v

[13]   L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, “Recent De velopments in Nanostructured Anode Materials for Re chargeable Lithium-Ion Batteries,” Energy & Environmental Science, Vol. 4, No. 8, 2011, pp. 2682-2699. doi:10.1039/c0ee00699h

[14]   K. A. Striebel, C. Z. Deng, S. J. Wen and E. J. Cairns, “Electrochemical Behavior of LiMn2O4 and LiCoO2 Thin films Produced with Pulsed Laser Deposition,” Journal of the Electrochemical Society, Vol. 143, No. 6, 1996, pp. 1821-1827. doi:10.1149/1.1836910

[15]   O. M. Hussain, K. Harikrishna, V. Kalaivani and C. M. Julien, “Structural and Electrical Properties of Lithium Manganese Oxide Thin Films Grown by Pulsed Laser Deposition,” Ionics, Vol. 13, No. 6, 2007, pp. 455-459. doi:10.1007/s11581-007-0134-7

[16]   V. Kalai Vani and O. M. Hussain, “Synthesis and Characterization of Electron Beam Evaporated LiCoO2 Thin Films,” Ionics, Vol. 13, No. 6, 2007, pp. 473-477. doi:10.1007/s11581-007-0141-8

[17]   F. Y. Shih and K. Z. Fung, “Effect of Annealing Tem perature on Electrochemical Performance of Thinfilm LiMn2O4 Cathode,” Journal of Power Sources, Vol. 153, 2006, pp. A179-A185.

[18]   N. J. Dudney, J. B. Bates, R. A. Zuhr, S. Young, J. D. Robertson, H. P. Jun and S. A. Hackney, “Nanocrystal line LixMn2-YO4 Cathodes for Solid-State Thin-Flim Re chargeable Lithium Batteries,” Journal of the Electrochemical Society, Vol. 146, No. 7, 1999, pp. 2455-2464. doi:10.1149/1.1391955

[19]   K. H. Hwang, S. H. Lee and S. K. Joo, “Characterization of Sputter-Deposited LiMn2O4 Thinfilms for Rechargable Microbatteries,” Journal of the Electrochemical Society, Vol. 141, No. 12, 1994, pp. 3296-3299. doi:10.1149/1.2059329

[20]   P. Liu, J. G. Zhang, J. A. Turner, C. E. Tracy and D. K. Benson, “Lithium Manganese Oxide ThinFilm Cathodes Prepared by Plasma Enhanced Chemical Vapor Deposi tion,” Journal of the Electrochemical Society, Vol. 146 No. 6, 1999, pp. 2001-2005. doi:10.1149/1.1391881

[21]   W. Liu and X. Huang, “Studies of Stannic Oxide as an Anode Material for Lithium-Ion Batteries,” Journal of the Electrochemical Society, Vol. 145, No. 1, 1998, pp. 59-62. doi:10.1149/1.1838211

[22]   J. F. M. Oudenhoven, L. Bagetto and P. H. L. Notten, “All-Solid State Lithium-Ion Microbatteries: A Reviews of Various Three-Dimensional Concepts,” Advanced En ergy Materials, Vol. 1, No. 1, 2011, pp. 10-33. doi:10.1002/aenm.201000002

[23]   B.-J. Hwang, C.-Y. Wang, M.-Y. Cheng and R. Santha nam, “Structure, Morphology, and Electrochemical Inves tigation of LiMn2O4 Thin Film Cathodes Deposited by Radio Frequency Sputtering for Lithium Microbatteries,” The Journal of Physical Chemistry C, Vol. 113, No. 26, 2009, pp. 11373-11380. doi:10.1021/jp810881d

[24]   H.-S. Moon and J.-W. Park, “Characteristics of In-Situ Annealed LiMn2O4 Thinfilms for a MEMs Power Sys tem,” Journal of the Korean Physical Society, Vol. 41, 2002, pp. 872-875.

[25]   K. J. Babu, P. J. Kumar and O. M. Hussain, “Microstructural and Electrochemical Properties of RF-Sputtered LiMn2O4 Thin Film Cathodes,” Applied Nano Science, Vol. 2, No. 4, 2012, pp. 401-407. doi:10.1007/s13204-011-0054-8

[26]   K. J. Babu, P. J. Kumar, O. M. Hussain and C. M. Julien, “Influence of Annealing Temperature on Microstructural and Electrochemical Properties of Rf-Sputtered LiMn2O4 Film Cathodes,” Journal of Solid State Electrochemistry, Vol. 16, No. 10, 2012, pp. 3383-3390. doi:10.1007/s10008-012-1784-6

[27]   F. Shinshu, S. Kaida, M. Nagayama and Y. Nitta, “X-Ray Absorption Fine Structure Study on Li-Mn-O Compounds: LiMn2O4, Li4Mn5O12 and LiMnO3,” Journal of Power Sources, Vol. 68, No. 2, 1997, pp. 609-612. doi:10.1016/S0378-7753(96, pp.02591-8

[28]   S. Chitra, P. Kalyani and T. Mohan, “Characterization and Electrochemical Studies of LiMn2O4 Cathode Mate rials Prepared by Combustion Method,” Journal of Elec troceramics, Vol. 3, No. 4, 1999, pp. 433-441. doi:10.1023/A:1009982301437

[29]   J. Li, J. Zhang, X. Zhang, C. Yang, N. Xu and B. Xia, “Study of the Storage Performance of a Li-Ion Cell at Elevated Temperature,” Electrochimica Acta, Vol. 55, No. 3, 2010, pp. 927-934. doi:10.1016/j.electacta.2009.09.077

[30]   C. Julien, E. Haro-Poniatowski, M. A. Camacho-Lopez, L. Escobar-Alarcon and J. Jimenez-Jarquin, “Growth of LiMn2O4 Thinfilms Prepared by Pulsed-Laser Deposition and Their Electrochemical Properties in Lithium Micro batteries,” Materials Science and Engineering B, Vol. 72, No. 1, 2000, pp. 36-72. doi:10.1016/S0921-5107(99, pp.00598-X

[31]   F. Simmen, T. Lippert, P. Novák, B. Neuenschwander, M. D?beli, M. Mallepell and A. Wokaun, “The Influence of Lithium Excess in the Target on the Properties and Compositions of Li1+XMn2O4 Thinfilms Prepared by PLD,” Applied Physics A, Vol. 93, No. 3, 2008, pp. 711-716. doi:10.1007/s00339-008-4701-1

[32]   P. J. Kumar, K. J. Babu and O. M. Hussain, “RF Magnetron Sputter Deposited Nanocrystalline LiCoO2 Film Ca thodes on Flexible Substrates,” Advanced Science, Engineering and Medicine, Vol. 4, No. 3, 2012, pp. 190-199. doi:10.1166/asem.2012.1147

[33]   W. Li and J. R. Dahn, “Lithium Ion Cells with Aqueous Electrolytes,” Journal of the Electrochemical Society, Vol. 142, No. 6, 1995, pp. 1742-1746. doi:10.1149/1.2044187

[34]   M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, “Fast Li-Ion Insertion into Nanosized LiMn2O4 without Domain Boundaries,” ACS Nano, Vol. 4, No. 2, 2010, pp. 741-752. doi:10.1021/nn9012065

 
 
Top