ANP  Vol.2 No.1 , February 2013
Synthesis of ZnO Nanoparticles by a Novel Surfactant Assisted Amine Combustion Method
Abstract: The as precursor, HMTA as fuel material and non-ionic surfactant (Triton-X 100). The X-Ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The ZnO powder shows polycrystalline nature having the crystallite size 21.25 nm. Crystallite size is calculated using Debye-Scherrer’s and Williamson-Hall equations. Porosity, Cell Volume, Micro strain, Morphology Index, Lorentz factor and Lorentz Polarization factor are also studied. From differential thermal analysis (DTA) & thermo gravimetric (TGA) it has been confirmed that nano powder has the phase purity. The weight loss percentage of the sample is 2.8385%. The particle size obtained 29 nm is in good agreement with the crystallite size calculated from X-Ray Diffraction pattern with the Particle Size Analyzer. The morphology of as prepared Zinc oxide nanopowders are characterized by scanning electron microscope (SEM). From specific area electron diffraction (SAED) pattern has specified the d-spacing and corresponding planes which coincide with the XRD d-spacing and planes.
Cite this paper: Prabhu, Y. , Rao, K. , Kumar, V. and Kumari, B. (2013) Synthesis of ZnO Nanoparticles by a Novel Surfactant Assisted Amine Combustion Method. Advances in Nanoparticles, 2, 45-50. doi: 10.4236/anp.2013.21009.

[1]   A. V. Dijkstra, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, “Identification of the Transition Responsible for the Visible Emission in ZnO Using Quantum Size Effects,” Journal of Luminesence, Vol. 90, No. 3, 2000, pp. 123-128. doi:10.1016/S0022-2313(99)00599-2

[2]   K. R. Lee, S. Park and K. W. Lee, “Rapid Ag Recovery Using Photocatalytic ZnO Nanopowders Prepared by Solution-Combustion Method,” Journal of Materials Science Letters, Vol. 22, No. 1, 2003, pp. 65-67. doi:10.1023/A:1021738526590

[3]   N. Riahi-Noori, R. Sarraf-Mamoory, P. Alizadeh and A. Mehdikhani, “Synthesis of ZnO Nano Powder by a Gel Combustion Method,” The Journal of Ceramic Processing Research, Vol. 9, No. 3, 2008, pp. 246-249.

[4]   B. D. Cullity, “The Elements of X-Ray Diffraction,” Addison-Wesley, Reading, 1978, p. 102.

[5]   S. B. Bhaduri and S. Bhaduri, “Non Equilibrium Processing of Materials,” Plenum, New York, 1999, p. 289. doi:10.1016/S1470-1804(99)80057-1

[6]   H. S. Peiser, H. P. Rooksby and A. J. C. Wilson, “X-Ray Diffraction by Polycrystalline Materials,” The Institute of Physics, London, 1955.

[7]   G. L. Clark, “Applied X-Rays,” 4th Edition, McGraw Hill Book Company, Inc., New York, 1955.

[8]   A. H. Compton and S. K. Allison, “X-Rays in Theory and Experiment,” D. Van Nostrand Company, Inc., New York, 1935.

[9]   R. Willardson and A. Beer, “Optical Properties of III-V Compounds,” Academic Press, New York, 1967, pp. 318 400.

[10]   M. Dressel and G. Gruner, “Electrodynamics of Solids Optical Properties of Electron in Matter,” Cambridge University Press, Cambridge, 2002, pp. 159-165. doi:10.1017/CBO9780511606168

[11]   G. Kottim, “Reflectance Spectroscopy,” Springer Verlag, New York, 1969.

[12]   S. Tandon and J. Gupta, “Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique,” Physica Status Solidi, Vol. 38, No. 1, 1970, pp. 363-367. doi:10.1002/pssb.19700380136

[13]   W. Wendlandt and H. Hecht, “Reflectance Spectroscopy,” Wiley Interscience, New York, 1966.

[14]   K. Sreen, C. Poulose and B. Unni, “Colored Cool Colorants Based on Rare Earth Metal Ions,” Solar Energy Mater Solar Cells, Vol. 92, No. 11, 2008, pp. 1462-1467. doi:10.1016/j.solmat.2008.06.008

[15]   M. Bagheri-Mohagheghi, N. Shahtahmasebi and M. Alinejad, “The Effect of the Post-Annealing Temperature on the Nano-Structure and Energy Band Gap of SnO2 Semiconducting Oxide Nano-Particles Synthesized by Polymerizing-Complexing Sol-Gel Method,” Physica B: Condensed Matter, Vol. 403, No. 1, 2008, pp. 2431-2437. doi:10.1016/j.physb.2008.01.004

[16]   C. Ting and S. Chen, “Structural Evolution and Optical Properties of TiO2 Thin Films Prepared by Thermal Oxidation of Sputtered Ti Films,” Journal of Applied Physics, Vol. 88, No. 8, 2000, pp. 4628-4633. doi:10.1063/1.1309039

[17]   S. López, S. Castillo, J. Chávez and K. Díaz, “Síntesis y Caracterización óptica, Eléctrica y Estructural de Películas Delgadas de CS2 Depositadas por el Método PECVD,” Materia, Vol. 8, No. 4, 2003, pp. 341-349.

[18]   F. Oliva, L. Avalle, E. Santos and O. Camara, “Photoelectrochemical Characterization of Nanocrystalline TiO2 Films on Titanium Substrates,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 146, No. 3, 2002, pp. 175-188. doi:10.1016/S1010-6030(01)00614-1

[19]   N. S. Pesika, K. J. Stebe and P. C. Searson, “Determination of the Particle Size Distribution of Quantum Nanocrystals from Absorbance Spectra,” Advanced Materials, Vol. 15, No. 15, 2003, pp. 1289-1291. doi:10.1002/adma.200304904

[20]   L. Brus, “Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory,” The Journal of Physical Chemistry, Vol. 90, No. 12, 1986, pp. 2555-2560. doi:10.1021/j100403a003