OJPChem  Vol.3 No.1 , February 2013
Nitroxide-Mediated Photo-Controlled/Living Radical Polymerization of Methacrylic Acid
Author(s) Eri Yoshida
ABSTRACT

The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate (tBuS) as the accelerator. Whereas the bulk polymerization yielded polymers with a bimodal molecular weight distribution in both the absence and presence of tBuS, the solution polymerization in methanol produced unimodal polymers with the molecular weight distribution of 2.0 - 2.3 in the presence of tBuS. The molecular weight distribution of the resulting poly (MAA) decreased with an in- crease in tBuS. The dilution of the monomer concentration also reduced the molecular weight distribution. The use of the initiator with a low 10-h half-life temperature also effectively controlled the molecular weight. The livingness of the polymerization was confirmed by obtaining linear increases in the first-order conversion versus time, the molecular weight versus the conversion, and the molecular weight versus the reciprocal of the initiator concentration.


Cite this paper
E. Yoshida, "Nitroxide-Mediated Photo-Controlled/Living Radical Polymerization of Methacrylic Acid," Open Journal of Polymer Chemistry, Vol. 3 No. 1, 2013, pp. 16-22. doi: 10.4236/ojpchem.2013.31004.
References
[1]   R. Thomas, “ Dispersant Theory and Polyacrylate Dis persants,” Journal of Water Borne Coatings, Vol. 12, No. 12, 1989, pp. 810.

[2]   R. Heeb, R. M. Bielecki, S. Lee and N. D. Spencer, “RoomTemperature, AqueousPhase Fabrication of Poly (methacrylic acid) Brushes by UVLEDInduced, Con trolled Radical Polymerization with High Selectivity for SurfaceBound Species,” Macromolecules, Vol. 42, No. 22, 2009, pp. 91249132. doi:10.1021/ma901607w

[3]   T. Cao, P. Munk, C. Ramireddy, Z. Tuzar and S. E. Webber, “Fluorescence Studies of Amphiphilic Poly(me thacrylic acid)blockpolystyreneblockpoly(methacrylic acid) Micelles,” Macromolecules, Vol. 24, No. 23, 1991, pp. 63006305. doi:10.1021/ma00023a036

[4]   J. Gohy, S. K. Varshney and R. Jerome, “WaterSoluble Complexes Formed by Poly(2vinylpyridinium)block poly(ethylene oxide) and Poly(sodium methacrylate) blockpoly(ethylene oxide) Copolymers,” Macromole cules, Vol. 34, No. 10, 2001, pp. 33613366. doi:10.1021/ma0020483

[5]   I. Chaduc, M. Lansalot, F. D’Agosto and B. Charleux, “RAFT Polymerization of Methacrylic Acid in Water,” Macromolecules, Vol. 45, No. 3, 2012, pp. 12411247. doi:10.1021/ma2023815

[6]   J. M. Pelet and D. Putnam, “High Molecular Weight Poly(methacrylic acid) with Narrow Polydispersity by RAFT Polymerization,” Macromolecules, Vol. 42, No. 5, 2009, pp. 14941499. doi:10.1021/ma801433g

[7]   B. Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo and S. H. Thang, “A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process,” Macro molecules, Vol. 32, No. 6, 1999, pp. 20712074. doi:10.1021/ma981472p

[8]   E. Sprong, D. D. WetRoos, M. P. Tonge and R. D. San derson, “Characterization and Rheological Properties of Model AlkaliSoluble Rheology Modifiers Synthesized by Reversible AdditionFragmentation ChainTransfer Polymerization,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 41, No. 2, 2003, pp. 223235. doi:10.1002/pola.10503

[9]   C. Yang and Y. Cheng, “RAFT Synthesis of Poly(Niso propylacrylamide) and Poly(methacrylic acid) Homopoly mers and Block Copolymers: Kinetics and Characteriza tion,” Journal of Applied Polymer Science, Vol. 102, No. 2, 2006, pp. 11911201. doi:10.1002/app.24415

[10]   E. H. Nejad, P. Castignolles, R. G. Gilbert and Y. Guilla neuf, “Synthesis of Methacrylate Derivatives Oligomers by DithiobenzoateRAFTMediated Polymerization,” Jour nal of Polymer Science Part A: Polymer Chemistry, Vol. 46, No. 6, 2008, pp. 22772289. doi:10.1002/pola.22563

[11]   K. Ishizu, H. Katsuhara and K. Itoya, “Controlled Radical Polymerization of Mathacrylic Acid Initiated by Diethyl dithiocarbamateMediated Iniferter,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 43, No. 1, 2005, pp. 230233. doi:10.1002/pola.20395

[12]   K. Matyjaszewski and J. Xia, “Atom Transfer Radical Polymerization,” Chemical Reviews, Vol. 101, No. 9, 2001, pp. 29212990. doi:10.1021/cr940534g

[13]   J. Yuan, Y. Shi, Z. Fu and W. Yang, “Synthesis of Am phiphilic Poly(methyl methacrylate)blockpoly(metha crylic acid) Diblock Copolymers by Atom Transfer Ra dical Polymerization,” Polymer International, Vol. 55, No. 3, 2006, pp. 360364. doi:10.1002/pi.1977

[14]   C. Dire, S. Magnet, L. Couvreur and B. Charleux, “Ni troxideMediated Controlled/Living FreeRadical Surfac tantFree Emulsion Polymerization of Methyl Methacry late Using a Poly(methacrylic acid)Based Macroalkoxy amine Initiator,” Macromolecules, Vol. 42, No. 1, 2009, pp. 95103. doi:10.1021/ma802083g

[15]   S. Brusseau, F. D’Agosto, S. Magnet, L. Couvreur, C. Chamignon and B. Charleux, “NitroxideMediated Co polymerization of Methacrylic Acid and Sodium 4Sty renesulfonate in Water Solution and OnePot Synthesis of Amphiphilic Block Copolymer Nanoparticles,” Macro molecules, Vol. 44, No. 14, 2011, pp. 55905598. doi:10.1021/ma2008282

[16]   E. Yoshida, “Effects of Illuminance and Heat Rays on PhotoControlld/Living Radical Polymerization Mediated by 4Methoxy2,2,6,6tetramethylpiperidine1oxyl,” In ternational Scholarly Research Network ISRN Polymer Science, 2012, Article ID 102186. http://www.hindawi.com/isrn/ps/2012/102186/ doi:10.5402/2012/102186

[17]   E. Yoshida, “PhotoControlled/Living Radical Polymeri zation Mediated by 2,2,6,6Tetramethylpiperidine1oxyl in Inert Atmospheres,” Colloid and Polymer Science, Vol. 290, No. 11, 2012, pp. 10871091. doi:10.1007/s0039601226680

[18]   E. Yoshida, “NitroxideMediated PhotoControlled/Liv ing Radical Dispersion Polymerization of Methyl Metha crylate,” Colloid and Polymer Science, Vol. 289, No. 14, 2011, pp. 16251630. doi:10.1007/s0039601124878

[19]   E. Yoshida, “Graft Copolymerization of Methyl Metha crylate on Polystyrene Backbone through NitroxideMe diated PhotoLiving Radical Polymerization,” Colloid and Polymer Science, Vol. 289, No. 7, 2011, pp. 837841. doi:10.1007/s0039601123850

[20]   E. Yoshida, “NitroxideMediated PhotoLiving Radical Polymerization of Methyl Methacrylate in the Presence of (?6Benzene)(?5cyclopentadienyl)FeII Hexafluorophos phate,” Colloid and Polymer Science, Vol. 288, No. 18, 2010, pp. 17451749.

[21]   E. Yoshida, “NitroxideMediated PhotoLiving Radical Polymerization of Methyl Methacrylate in Solution,” Col loid and Polymer Science, Vol. 288, No. 1617, 2010, pp. 16391643. doi:10.1007/s0039601022876

[22]   E. Yoshida, “Stability of Growing Polymer Chain Ends for NitroxideMediated PhotoLiving Radical Polymeri zation,” Colloid and Polymer Science, Vol. 288, No. 9, 2010, pp. 10271030. doi:10.1007/s003960102230x

[23]   E. Yoshida, “Effects of Initiators and PhotoAcid Gen erators on NitroxideMediated PhotoLiving Radical Po lymerization of Methyl Methacrylate,” Colloid and Poly mer Science, Vol. 288, No. 8, 2010, pp. 901905. doi:10.1007/s003960102220z

[24]   E. Yoshida, “Effect of Azoinitiators on NitroxideMedi ated PhotoLiving Radical Polymerization of Methyl Methacrylate,” Colloid and Polymer Science, Vol. 288, No. 3, 2010, pp. 341345. doi:10.1007/s0039600921634

[25]   E. Yoshida, “NitroxideMediated PhotoLiving Radical Polymerization of Methyl Methacrylate Using (4Tert Butylphenyl)diphenylsulfonium Triflate as a PhotoAcid Generator,” Colloid and Polymer Science, Vol. 288, No. 2, 2010, pp. 239243. doi:10.1007/s0039600921616

[26]   E. Yoshida, “PhotoLiving Radical Polymerization of Methyl Methacrylate Using Alkoxyamine as an Initiator,” Colloid and Polymer Science, Vol. 288, No. 1, 2010, pp. 713. doi:10.1007/s0039600921131

[27]   E. Yoshida, “Synthesis of Poly(methyl methacrylate) blockpoly(tetrahydrofuran) by PhotoLiving Radical Po lymerization Using a 2,2,6,6Tetramethylpiperidine1 oxyl,” Colloid and Polymer Science, Vol. 287, No. 12, 2009, pp. 14171424. doi:10.1007/s0039600921051

[28]   E. Yoshida, “PhotoLiving Radical Polymerization of Methyl Methacrylate by 2,2,6,6Tetramethylpiperidine1 oxyl in the Presence of a PhotoAcid Generator,” Colloid and Polymer Science, Vol. 287, No. 7, 2009, pp. 767772. doi:10.1007/s0039600920232

[29]   E. Yoshida, “PhotoLiving Radical Polymerization of Methyl Methacrylate by a Nitroxide Mediator,” Colloid and Polymer Science, Vol. 286, No. 1415, 2008, pp. 16631666. doi:10.1007/s003960081930y

[30]   E. Yoshida, “PhotoControlled/Living Radical Polymeri zation of TertButyl Methacrylate in the Presence of a PhotoAcid Generator Using a Nitroxide Mediator,” Col loid and Polymer Science, Vol. 290, No. 7, 2012, pp. 661665. doi:10.1007/s0039601226052

[31]   E. Yoshida, “Selective Controlled/Living Photoradical Polymerization of Glycidyl Methacrylate, Using a Ni troxide Mediator in the Presence of a Photosensitive Tri arylsulfonium Salt,” Polymers, Vol. 4, No. 3, 2012, pp. 15801589. doi:10.3390/polym4031580

[32]   E. Yoshida, “PhotoControlled/Living Radical Polymeri zation of 2(Dimethylamino)ethyl Methacrylate Using 4Methoxy2,2,6,6tetramethylpiperidine1oxyl as a Me diator,” Colloid and Polymer Science, Vol. 290, No. 10, 2012, pp. 965969. doi:10.1007/s003960122641y

[33]   E. Yoshida, “Aqueous PhotoLiving Radical Polymeriza tion of Sodium Methacrylate Using a WaterSoluble Ni troxide Mediator,” International Scholarly Research Network ISRN Polymer Science, 2012, Article ID 630478. http://www.hindawi.com/isrn/ps/2012/630478/ doi:10.5402/2012/630478

[34]   T. Miyazawa, T. Endo, S. Shiihashi and M. Ogawara, “Selective Oxidation of Alcohols by Oxoaminium Salts (R2N=O+ X?),” Journal of Organic Chemistry, Vol. 50, No. 8, 1985, pp. 13321334. doi:10.1021/jo00208a047

[35]   Y. Kita, K. Gotanda, K. Murata, M. Suemura, A. Sano, T. Yamaguchi, M. Oka and M. Matsugi, “Practical Radical Additions under Mild Conditions Using 2,2’Azobis(2,4 dimethyl4methoxyvaleronitrile) [V70] as an Initiator,” Organic Process Research & Development, Vol. 2, No. 4, 1998, pp. 250254. doi:10.1021/op970059z

[36]   W. E. Bull, J. A. Seaton and L. F. Audrieth, “Some Prop erties of Tetraalkyl2tetrazenes,” Journal of American Chemical Society, Vol. 80, No. 10, 1958, pp. 25162518. doi:10.1021/ja01543a038

[37]   K. Sugiyama, T. Nakaya and M. Imoto, “Vinyl Polym erization. 275. Polymerization of Vinyl Monomers Pho tosensitized by Tetramethyltetrazene,” Journal of Poly mer Science Part A1, Vol. 10, No. 1, 1972, pp. 205215. doi:10.1002/pol.1972.150100119

[38]   P. Smith and A. M. Rosenberg, “The Kinetics of the Pho tolysis of 2,2’Azobisisobutyronitrile,” Journal of Am erican Chemical Society, Vol. 81, No. 9, 1959, pp. 2037 2043. doi:10.1021/ja01518a002

[39]   M. TalatErben and S. Bywater, “The Thermal Decompo sition of 2,2’Azobisisobutyronitrile. Part 1. Products of the Reaction,” Journal of American Chemical Society, Vol. 77, No. 14, 1955, pp. 37103711. doi:10.1021/ja01619a010

[40]   G. S. Hammond, O. D. Trapp, R. T. Keys and D. L. Neff, “Isolation and Study of the Intermediate [DimethylN(2 cyano2propyl)ketenimine] Formed in the Decomposi tion of α,α’Azoisobutyronitrile,” Journal of American Chemical Society, Vol. 81, No. 18, 1959, pp. 4878 4882. doi:10.1021/ja01527a030

[41]   G. S. Hammond, C. S. Wu, O. D. Trapp, J. Warkentin, R. T. Keys and D. L. Neff, “The Mechanism of Decomposi tion of Azo Compounds. II. Cage Effects in the Decom position of ?α,α’Azoisobutyronitrile and Related Com pounds,” Journal of American Chemical Society, Vol. 82, No. 20, 1960, pp. 53945399. doi:10.1021/ja01505a026

[42]   G. S. Hammond and R. C. Neuman Jr., “The Mechanism of Decomposition of Azo Compounds. III. Cage Effects with Positively Charged Geminate Radical Pairs,” Jour nal of the American Chemical Society, Vol. 85, No. 10, 1963, pp. 15011508. doi:10.1021/ja00893a026

[43]   “Wako Chemicals Information.” http://www.wakochem.co.jp/kaseihin/waterazo/VA061.htm.

 
 
Top