JBiSE  Vol.6 No.2 , February 2013
Measurement of lumbar muscle glucose utilization rate can be as useful in estimating skeletal muscle insulin resistance as that of thigh muscle
ABSTRACT

Background: Skeletal muscle glucose utilization (SMGU) can be accessed by positron emission tomography (PET) and18F-FDG to characterize insulin resistance. The quantity of skeletal muscle in the lumbar is sufficient to indicate that SMGU in the lumbar (SMGU- lumbar) can be measured with18F-FDG PET of the chest instead of obtaining thigh muscle SMGU (SMGU-thigh). This would reduce PET scan time to avoid thigh muscle PET scan. This study was aimed to compare SMGU-lumbar and thigh muscle SMGU under insulin clamping to identify the validity of measurements of SMGU in the lumbar for studies of insulin resistance. Methods: Thirty-three patients underwent sequential dynamic18F-FDG PET of both the thoracic (37 min) and thigh region (22 min) during hyperinsulinemic euglycemic insulin clamping. Both SMGU-lumbar and SMGU-thigh were calculated by Patlak graphical analysis. Whole body insulin resistance was assessed by a whole body glucose disposal rate during hyperinsulinemic euglycemic insulin clamping. Input function was obtained from the time activity curve of the descending aorta and venous blood sampling as previously validated. Results: SMGU-thigh (0.0506 ± 0.0334 μmol/min/g) was comparable to SMGU-lumbar (0.0497 ± 0.0255 μmol/min/g). The Bland-Altman method of difference plot analysis showed a significant correlationship between SMGU- thigh and SMGU-lumbar (r = 0.506, p = 0.0028). There were seen very good significant correlationship between whole body glucose utilization rate in both thigh (r = 0.737, p = 0.0001) and lumbar (r = 0.772, p = 0.0001). Conclusion: These results support the validity of measuring SMGU-lumbar to estimate insulin resistance during PET imaging of the chest.


Cite this paper
Yokoyama, I. , Moritan, T. and Inoue, Y. (2013) Measurement of lumbar muscle glucose utilization rate can be as useful in estimating skeletal muscle insulin resistance as that of thigh muscle. Journal of Biomedical Science and Engineering, 6, 201-208. doi: 10.4236/jbise.2013.62024.
References
[1]   Kelley, D.E., Price, J.C. and Cobelli, C. (2001) Assessing skeletal muscle glucose metabolism with positron emis sion tomography. IUBMB Life, 52, 279-284. doi:10.1080/152165401317291129

[2]   Reaven, G.M. (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37, 1595-1607. doi:10.2337/diabetes.37.12.1595

[3]   DeFronzo, R.A. (1992) Insulin resistance, hyperinsuline mia, and coronary artery disease: A complex metabolic web. Journal of Cardiovascular Pharmacology, 20, S1 S16. doi:10.1097/00005344-199200111-00002

[4]   Després, J.P., Lamarche, B., Mauriège, P., et al. (1996) Hyperinsulinemia as an independent risk factor for ischemic heart disease. The New England Journal of Medicine, 334, 952-957. doi:10.1056/NEJM199604113341504

[5]   Voipio-Pulkki, L.M., Nuutila, P., Knuuti, M.J., et al. (1993) Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomo graphy. Journal of Nuclear Medicine, 34, 2064-2067.

[6]   Yokoyama, I., Ohtake, T., Momomura, S., et al. (1999) Insulin action on heart and skeletal muscle FDG uptake in patients with hypertriglyceridemia. Journal of Nuclear Medicine, 40, 1116-1121.

[7]   Peltoniemi, P., L?nnroth, P., Laine, H., et al. (1996) Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. The Journal of Clinical Investigation, 98, 2094-2099. doi:10.1172/JCI119015

[8]   Yokoyama, I., Yonekura, K., Ohtake, T., et al. (2000) Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-in sulin-dependent diabetes mellitus. Journal of Nuclear Cardiology, 7, 242-248. doi:10.1016/S1071-3581(00)70013-4

[9]   Iozzo, P., Chareonthaitawee, P., Dutka, D., Betteridge, D.J., Ferrannini, E. and Camici, P.G. (2002) Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes, 51, 3020-3024. doi:10.2337/diabetes.51.10.3020

[10]   Nuutila, P., Knuuti, J., Ruotsalainen, U., et al. (1993) Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. American Journal of Physiology, 264, E756-E762.

[11]   Nuutila, P., M?ki, M., Laine, H., et al. (1995) Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. The Journal of Clinical Investiga tion, 96, 1003-1009. doi:10.1172/JCI118085

[12]   Yokoyama, I., Ohtake, T., Momomura, S., et al. (1998) Organ-specific insulin resistance in patients with nonin sulin-dependent diabetes mellitus and hypertension. Jour nal of Nuclear Medicine, 39, 884-889.

[13]   Utriainen, T., Takala, T., Luotolahti, M., et al. (1998) Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia, 41, 555-559. doi:10.1007/s001250050946

[14]   Yokoyama, I. (2013) Myocardial insulin resistance is not always pararell skeletal muscle and whole body insulin resistance: A mini review—Myocardial insulin resistance. Journal of Biomedical Science and Engineering, 6, 31- 35. doi:10.4236/jbise.2013.61005

[15]   Nuutila, P., Koivisto, V.A., Knuuti, J., et al. (1992) Glu cose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. The Journal of Clinical Investiga tion, 89, 1767-1774. doi:10.1172/JCI115780

[16]   Patlak, C.S., Blasberg, R.G. and Fenstermacher, J.D. (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Journal of Cerebral Blood Flow & Metabolism, 3, 1-7. doi:10.1038/jcbfm.1983.1

[17]   Gambhir, S.S., Schwaiger, M., Huang, S.C., et al. (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing po sitron emission tomography and fluorine-18 deoxy glucose. Journal of Nuclear Medicine, 30, 359-366.

[18]   Ohtake, T., Kosaka, N., Watanabe, T., et al. (1991) Non invasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. Journal of Nuclear Medicine, 32, 1432-1438.

[19]   Yokoyama, I., Yonekura, K., Moritan, T., et al. (2001) Toroglitazone can improve impaired femoral muscle glucose utilization in type II diabetics with or without hypertension. Journal of Nuclear Medicine, 42, 1005-1010.

[20]   Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2005) Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arterial blood sampling. Nuclear Medicine Communications, 26, 31-37. doi:10.1097/00006231-200501000-00006

[21]   Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2003) Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET. Journal of Nuclear Medicine, 44, 1592-1598.

[22]   Ehrenkaufer, R.E., Potocki, J.F. and Jewett, D.M. (1984) Simple synthesis of F-18-labeled 2-fluoro-2-deoxy-D-glucose: Concise communication. Journal of Nuclear Medi cine, 25, 333-337.

[23]   Kelley, D.E., Williams, K.V., Price, J.C. and Goodpaster, B. (1999) Determination of the lumped constant for [18F] fluorodeoxyglucose in human skeletal muscle. Journal of Nuclear Medicine, 40, 1798-1804.

[24]   Peltoniemi, P., L?nnroth, P., Laine, H., et al. (2000) Lumped constant for [18F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. American Journal of Physiology. Endocrinology Metabolism, 279, E1122-E1130.

[25]   Yokoyama, I., Ohtake, T., Momomura, S., et al. (1998) Hyperglycemia rather than insulin resistance is related to coronary flow reserve in patients with non-insulin de pendent diabetes mellitus. Diabetes, 47, 119-124. doi:10.2337/diabetes.47.1.119

[26]   Lackner, R., Challiss, R.A., West, D. and Newsholme, E.A. (1984) A problem in the radiochemical assay of glucose 6-phosphatase in muscle. The Biochemical Journal, 218, 649-651.

[27]   Yokoyama, I., Ohtake, T., Momomura, S., Nishikawa, J., Sasaki, Y. and Omata, M. (1996) Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation, 94, 3232-3238. doi:10.1161/01.CIR.94.12.3232

[28]   Yokoyama, I., Momomura, S., Ohtake, T., et al. (1998) Altered myocardial vasodilatation in patients with hyperiglyceridemia in anatomically normal coronary arteries. Arteriosclerosis Thrombosis and Vascular Biology, 18, 294-299. doi:10.1161/01.ATV.18.2.294

[29]   Yokoyama, I., Ohtake, T., Momomura, S., et al. (1997) Reduced myocardial flow reserve in patients with non insulin dependent diabetes mellitus. Journal of the Ame rican College of Cardiology, 30, 1472-1477. doi:10.1016/S0735-1097(97)00327-6

[30]   Yokoyama, I., Momomura, S., Ohtake, T., et al. (1999) Improvement of myocardial vasodilatation in hypelipi demics due to diffuse coronary arterosclerosis after lipid lowering therapy. Circulation, 100, 117-122. doi:10.1161/01.CIR.100.2.117

[31]   Yokoyama, I., Inoue, Y., Moritan, T., Ohtomo, K. and Nagai, R. (2004) Impaired myocardial vasodilatation dur ing hyperaemic stress is improved by simvastatin but not by pravastatin in patients with hypercholesterolaemia. European Heart Journal, 25, 671-679. doi:10.1016/j.ehj.2004.02.017

[32]   Van der Weerdt, A.P., Klein, L.J., Visser, C.A., Visser, F.C. and Lammertsma, A.A. (2002) Use of arterialised venous instead of arterial blood for measurement of myocardial glucose metabolism during euglycaemic-hyperi nsulinaemic clamping. European Journal of Nuclear Medicine and Molecular Imaging, 29, 663-669. doi:10.1007/s00259-002-0772-y

[33]   Iida, H., Miura, S., Shoji, Y., et al. (1998) Non-invasive quantitation of CBF using oxygen-15-water and a dual PET system. Journal of Nuclear Medicine, 39, 1789-1798.

[34]   Ito, H., Kinoshita, T., Tamura, Y., Yokoyama, I. and Iida, H. (1999) Effect of intravenous dipyridamole on cerebral blood flow in humans: A PET study. Stroke, 30, 1616- 1620. doi:10.1161/01.STR.30.8.1616

[35]   Ito, H., Yokoyama, I., Iida, H., et al. (2000) Regional differences in cerebral vascular response to PaCO2 changes in humans measured by PET. Journal of Cerebral Blood Flow & Metabolism, 20, 1264-1270.

[36]   Yokoyama, I., Inoue, Y., Kinoshita, T., Itoh, H., Kanno, I. and Iida, H. (2008) Heart and brain circulation and CO2 in healthy men. Acta Physiologica, 193, 303-308. doi:10.1111/j.1748-1716.2008.01846.x

 
 
Top