Accurate Tools for Analyzing the Behavior of Impulse Noise Reduction Filters in Color Images

Fabrizio Russo^{*}

Show more

Effective cancellation of noise and preservation of color/structural information are features of paramount importance for any filter devoted to impulse noise removal in color images. In this paper novel full-reference tools for analyzing the behavior of this family of filters are presented. The proposed approach is based on the classification of color errors into two main classes that separately take into account the inaccuracy in removing noise pulses and the filtering distortion. The distortion errors are then classified into two subclasses for a deeper analysis of the filtering behavior. Computer simulations show that the proposed method gives more accurate results than using other measures of filtering performance in the literature. Furthermore, the method can easily yield the spatial location of the different filtering features in the image.

References

[1] K. N. Plataniotis and A. N. Venetsanopoulos, “Color Image Processing and Application,” Springer Verlag, New York, 2000.

[2] R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis and A. N. Venetsanopoulos, “Vector Filtering for Color Imaging,” IEEE Signal Processing Magazine, Vol. 22, No. 1, 2005, pp. 74-86. doi:10.1109/MSP.2005.1407717

[3] R. Lukac and K. N. Plataniotis, “A Taxonomy of Color Image Filtering and Enhancement Solutions,” In: P. W. Hawkes, Ed., Advances in Image and Electron Physics, Vol. 140, Elsevier, New York, 2006, pp. 187-264.

[4] R. Lukac, B. Smolka, K. N. Plataniotis and A. N. Venetsanopoulos, “Selection Weighted Vector Directional ?lters,” Computer Vision and Image Understanding, Vol. 94, No. 1-3, 2004, pp. 140-167.
doi:10.1016/j.cviu.2003.10.013

[5] R. Lukac, B. Smolka, K. N. Plataniotis and A. N. Venetsanopoulos, “Vector Sigma Filters for Noise Detection and Removal in Color Images,” Journal of Visual Communication and Image Representation, Vol. 17, No. 1, 2006, pp. 1-26. doi:10.1016/j.jvcir.2005.08.007

[6] Y. Li, G. R. Arce and J. Bacca, “Weighted Median Filters for Multichannel Signals,” IEEE Transactions on Signal Processing, Vol. 54, No. 11, 2006, pp. 4271-4281.
doi:10.1109/TSP.2006.881208

[7] S. Schulte, V. De Witte, M. Nachtegael, D. Van der Weken and E. E. Kerre, “Fuzzy Two-Step Filter for Impulse Noise Reduction from Color Images,” IEEE Transactions on Image Processing, Vol. 15, No. 11, 2006, pp. 3568-3579.

[8] S. Schulte, S. Morillas, V. Gregori and E. E. Kerre, “A New Fuzzy Color Correlated Impulse Noise Reduction Method,” IEEE Transactions on Image Processing, Vol. 16, No. 10, 2007, pp. 2565-2575.
doi:10.1109/TIP.2007.904960

[9] P.-E. Ng and K.-K. Ma, “A Switching Median Filter with Boundary Discriminative Noise Detection for Extremely Corrupted Images,” IEEE Transactions on Image Processing, Vol. 15, No. 6, 2006, pp. 1506-1516.
doi:10.1109/TIP.2005.871129

[10] Y. Q. Dong and S. F. Xu, “A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise,” IEEE Signal Processing Letters, Vol. 14, No. 3, 2007, pp. 193-196. doi:10.1109/LSP.2006.884014

[11] Y. Y. Li, F.-L. Chung and S. T. Wang, “A Robust Neurofuzzy Network Approach to Impulse Noise Filtering for Color Images,” Applied Soft Computing, Vol. 8, No. 2, 2008, pp. 872-884.

[12] Z. Y. Xu, H. R. Wu, B. Qiu and X. H. Yu, “Geometric Features-Based Filtering for Suppression of Impulse Noise in Color Images,” IEEE Transactions on Image Processing, Vol. 18, No. 8, 2009, pp. 1742-1759.
doi:10.1109/TIP.2009.2022207

[13] S. Morillas, V. Gregori and A. Hervas, “Fuzzy Peer Groups for Reducing Mixed Gaussian-Impulse Noise From Color Images,” IEEE Transactions on Image Processing, Vol. 18, No. 7, 2009, pp. 1452-1466.
doi:10.1109/TIP.2009.2019305

[14] T. Melange, M. Nachtegael and E. E. Kerre, “Fuzzy Random Impulse Noise Removal from Color Image Sequences,” IEEE Transactions on Image Processing, Vol. 20, No. 4, 2011, pp. 959-970.
doi:10.1109/TIP.2010.2077305

[15] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam and C. H. PremChand, “Removal of High Density Salt and Pepper Noise through Modified Decision Based Unsymmetric Trimmed Median Filter,” IEEE Signal Processing Letters, Vol. 18, No. 5, 2011, pp. 287-290.
doi:10.1109/LSP.2011.2122333

[16] M. E. Yuksel and A. Basturk, “Application of Type-2 Fuzzy Logic Filtering to Reduce Noise in Color Images,” IEEE Computational Intelligence Magazine, Vol. 7, No. 3, 2012, pp. 25-35. doi:10.1109/MCI.2012.2200624

[17] F. Russo, “New Method for Performance Evaluation of Grayscale Image Denoising Filters,” IEEE Signal Processing Letters, Vol. 17, No. 5, 2010, pp. 417-420.
doi:10.1109/LSP.2010.2042516

[18] F. Russo, “Design of Fuzzy Relation-Based Image Sharpeners,” In: A. Ruano and A. R. Varkonyi-Koczy, Eds., New Advances in Intelligent Signal Processing, Springer-Verlag, Berlin, 2011, pp. 115-131.
doi:10.1007/978-3-642-11739-8_6

[19] N. Ponomarenko, F. Battisti, K. Egiazarian, J. Astola and V. Lukin, “Metrics Performance Comparison for Color Image Database,” 4th International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, 14-16 January 2009.

[20] F. Russo, A. De Angelis and P. Carbone, “A Vector Approach to Quality Assessment of Color Images,” IEEE Instrumentation and Measurement Technology Conference Proceedings, Victoria, 12-15 May 2008, pp. 814-818.

[21] A. De Angelis, A. Moschitta, F. Russo and P. Carbone, “A Vector Approach for Image Quality Assessment and Some Metrological Considerations,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 1, 2009, pp. 14-25. doi:10.1109/TIM.2008.2004982

[22] A. Medda and V. DeBrunner, “Color Image Quality Index Based on the UIQI,” 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, Denver, 26-28 March 2006, pp. 213-217.
doi:10.1109/SSIAI.2006.1633753

[23] R. Franzen, “Kodak Lossless True Color Image Suite.”
http://r0k.us/graphics/kodak/