Decoupling Zeros of Positive Discrete-Time Linear Sys-tems

References

[1] L. Farina and S. Rinaldi, “Positive Linear Systems; Theory and Applications,” Wiley, New York, 2000.

[2]
T. Kaczorek, “Positive 1D and 2D Systems,” Springer Verlag, London, 2001.

[3]
R. E. Kalman, “Mathematical Descriptions of Linear Systems,” SIAM Journal on Control, Vol. 1, No. 2, 1963, pp. 152-192.

[4]
R. E. Kalman, “On the General Theory of Control Systems,” Proceedings of the First International Congress on Automatic Control, Butterworth, London, 1960, pp. 481-493.

[5]
P. J. Antsaklis and A. N. Michel, “Linear Systems,” Birkhauser, Boston, 2006.

[6]
T. Kaczorek, “Linear Control Systems,” Vol. 1, Wiley, New York, 1993.

[7]
T. Kailath, “Linear Systems,” Prentice-Hall, Englewood Cliffs, New York, 1980.

[8]
H. H. Rosenbrock, “State-Space and Multivariable Theory,” Wiley, New York, 1970.

[9]
W. A. Wolovich, “Linear Multivariable Systems,” Springer-Verlag, New York, 1974.

[10]
T. Kaczorek, “Reachability and Controllability to Zero Tests for Standard and Positive Fractional Discrete-Time Systems,” Journal Européen des Systèmes Automatisés, Vol. 42, No. 6-8, 2008, pp. 770-781.

[11]
T. Kaczorek, “Decomposition of the Pairs (A,B) and (A,C) of the Positive Discrete-Time Linear Systems,” Proceedings of TRANSCOMP, Zakopane, 6-9 December 2010.

[12]
H. H. Rosenbrock, “Comments on Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic Geometric and Complex Variable Theory,” International Journal on Control, Vol. 26, No. 1, 1977, pp. 157-161.