Analytical Expressions of Concentration of VOC and Oxygen in Steady-State in Biofilteration Model

Show more

References

[1] S. P. P Ottengraf, H. J. Rehm and G. Reed, Eds., “Exhaust Gas Purification,” Biotechnology, Vol. 8, 1986, pp. 425-452.

[2] S. P. P. Ottengraf and A. H. C. Van den Oever, “Kinetics of Organic Compound Removal from Waste Gases with a Biological Filter,” Biotechnology and Bioengineering, Vol. 25, No. 12, 1983, pp. 3089-3102.
doi:10.1002/bit.260251222

[3] S. M. Zarook, B. C. Baltzis, Y.-S. Oh and R. Bartha, “Biofiltration of Methanol Vapor,” Biotechnology and Bioengineering, Vol. 41, No. 5, 1993, pp. 512-524.
doi:10.1002/bit.260410503

[4] E. R. Allen and S. Phatak, “Control of Organosulfur Ompound Emissions Using Biofiltration. Methyl Mercaptan,” Proceedings of the 86th, Air and Waste Management Association Annual Meeting and Exhibition, Denver, 13-18 June 1993.

[5] M. A. Deshusses and I. J. Dunn, “Modeling Experiments on the Kinetics of Mixed-Solvent Removal from Waste Gas in a Biofilter,” Proceedings of the 6th European Congress in Iotechnology, Florence, 13-17 June 1993.

[6] S. M. Zarook and B. C. Baltzls, “Biofiltration of Toluene Vapour under Steady State and Transient Conditions,” Chemical Engineering Science, Vol. 49, 1994, pp. 4347-4360. doi:10.1016/S0009-2509(05)80026-0

[7] S. P. P. Ottengraf, R. M. M. Diks, “Biotechniques for Air Pollution Abatement and Odor Control Policies,” Process Technology of Biotechniques, Elsevier Science, New York, 1992, pp. 17-31.

[8] C. Van Lith, S. L. David and R. Marsh, “Design Criteria for Biofilters,” Transactions of the Institution of Chemical Engineers, Vol. 68, 1990, pp. 127-132.

[9] D. S. Hodge and J. S. Devinny, “Modeling Removal of Air Contaminants by Biofiltration,” Journal of Environmental Engineering, Vol. 121, No. 1, 1995, pp. 21-32.
doi:10.1061/(ASCE)0733-9372(1995)121:1(21)

[10] M. A. Deshusses, G. Hamer and I. J. Dunn, “Behavior of Biofilters for Waste Air Biotreatment,” Journal of Environmental Science Technology, Vol. 29, No. 4, 1995, pp. 1048-1068. doi:10.1021/es00004a027

[11] E. Morgenroth, E. D. Schroeder, D. P. Y. Chang and K. M. Scow, “Modeling of a Compost Biofilter Incorporating Microbial Growth,” American Society of Civil Engineers, 1995, pp. 473-480.

[12] R. S. Cherry and D. N. Thompson, “The Shift from Growth to Nutrient limited Maintenance Kinetics during acclimation of a Biofilter,” Journal of Biotechnology Bioengineering, Vol. 56, No. 3, 1997, pp. 330-339.
doi:10.1002/(SICI)1097-0290(19971105)56:3<330::AID-BIT11>3.0.CO;2-K

[13] S. M. Zarook, A. A. Shaikh and Z. Ansar, “Development, Experimental Validation and Dynamic Analysis of a General Transient Biofilter Model,” Journal of Chemical Engineering Science, Vol. 529, No. 5, 1997, pp. 759-773.
doi:10.1016/S0009-2509(96)00428-9

[14] S. M. Zarook and A. A. Shaikh, “Analysis and Comparison of Biofilter Models,” Chemical Engineering Journal, Vol. 65, No. 1, 1997, pp. 55-61.
doi:10.1016/S1385-8947(96)03101-4

[15] A. Coely, Eds., et al., “Backlund and Darboux Transformation,” American Mathematical Society, Providence, 2001.

[16] M. Wadati, H. Sanuki and K. Konno, “Relationships among Inverse Method, Backlund Transformation and an Infinite Number of Conservation Laws,” Progress of the Theoretical Physics, Vol. 53, No. 2, 1975, pp. 419-436.
doi:10.1143/PTP.53.419

[17] C. S. Gardener, J. M. Green, M. D. Kruskal and R. M. Miura, “Method for Solving the Korteweg-de Vries Equation,” Physical Review Letters, Vol. 19, No. 19, 1967, pp. 1095-1097. doi:10.1103/PhysRevLett.19.1095

[18] R. Hirota, “Exact Solution of the Korteweg-De Vries Equation for Multiple Collisions of Solitons,” Physical Review Letters, Vol. 27, No. 18, 1971, pp. 1192-1194.
doi:10.1103/PhysRevLett.27.1192

[19] W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations Solitons,” American Journal of Physics, Vol. 60, No. 7, 1992, p. 650. doi:10.1119/1.17120

[20] J. H. He, “Approximate Analyticalsolution for Seepage Flow with Fractionalderivatives in Porous Media,” American Computer Methods in Applied Mechanics and Engineering, Vol. 167, No. 1-2, 1998, pp. 57-68.
doi:10.1016/S0045-7825(98)00108-X

[21] J. H. He, “Chaos Solitons Fractals,” Applied Mathematics and Computation, Vol. 26, No. 3, 2005, p. 695.

[22] J. H. He, “Homotopy Perturbation Method for Solving Boundary Value Problems,” Physics Letters A, Vol. 350, No. 1-2, 2006, pp. 87-88.
doi:10.1016/j.physleta.2005.10.005

[23] J. H. He, “A Simple Perturbation Approach to Blasius Equation,” Applied Mathematics and Computation, Vol. 140, No. 2-3, 2003, pp. 217-222.
doi:10.1016/S0096-3003(02)00189-3

[24] D. D. Ganji and M. Rafei, “Solitary Wave Solutions for a Generalized Hirota-Satsuma Coupled KdV Equation by Homotopy Perturbation Method,” Physics Letters A, Vol. 356, No. 2, 2006, pp. 131-137.
doi:10.1016/j.physleta.2006.03.039

[25] P. D. Ariel, “Homotopy Perturbation Method and the Natural Convection Flow of a Third Grade Fluid through a Circular Tube,” Nonlinear Science Letters A, Vol. 1, 2010, pp. 43-52.

[26] B. Jang, “Two-Point Boundary Value Problems by the Extended Adomian Decomposition Method,” Journal of Computational and Applied Mathematics, Vol. 219, No. 1, 2008, pp. 253-262. doi:10.1016/j.cam.2007.07.036

[27] G. Adomian, “Solutions of Nonlinear PDE,” Applied Mathematics, Vol. 11, No. 3, 1998, pp. 121-123.

[28] G. Adomian, “A Global Method for Solution of Complex Systems,” Mathematical Modelling, Vol. 5, No. 4, 1984, pp. 251-263. doi:10.1016/0270-0255(84)90004-6

[29] G. Adomian, “Stochastic Nonlinear Modeling of Fluctuations in a Nuclear Reactor—A New Approach,” Annals of Nuclear Energy, Vol. 8, No. 7, 1981, pp. 329-330.
doi:10.1016/0306-4549(81)90053-0

[30] A. Saufyane and M. Boulmalf, “Solution of Linear and Nonlinear Parabolic Equations by the Decomposition Method,” Applied Mathematics and Computation, Vol. 162, No. 2, 2005, pp. 687-693.
doi:10.1016/j.amc.2004.01.005