TEL  Vol.3 No.1 , February 2013
An Information Theoretic Approach to Understanding the Micro Foundations of Macro Processes
ABSTRACT
In the context of a simple equilibrium macro process we suggest a probability basis for recovering information regarding the unknown and unobservable micro process, and solving the resulting inverse problem.

Cite this paper
S. B. Villas-Boas and G. Judge, "An Information Theoretic Approach to Understanding the Micro Foundations of Macro Processes," Theoretical Economics Letters, Vol. 3 No. 1, 2013, pp. 48-51. doi: 10.4236/tel.2013.31008.
References
[1]   A. Gorban and G. Judge, “Entropy the Markov Ordering Approach,” Entropy, 12: 5, 2009,1145-1193.

[2]   G. Judge and R. Mittelhammer, “An Information Theoretic Approach to Econometrics,” Cambridge University Press, Cambridge, 2012.

[3]   N. Cressie and T. Read, “Multinomial Goodness of Fit Tests,” Journal of Royal Statistical Society, 46: 3, 1984. 448-464.

[4]   T. Read and N. Cressie, “Goodness of Fit Statistics for Discrete Multivariate Data,” Springer Verlag, New York, 1988. doi:10.1007/978-1-4612-4578-0

[5]   E. Jaynes, “Information Theory and Statistical Mechanics,” In: K. W. Ford, Ed., Statistical Physics, W. A. Benjamin, New York, 1963, pp. 181-218.

[6]   A. Owen, “Empirical Likelihood,” Chapman and Hall, New York, 2001. doi:10.1201/9781420036152

[7]   E. Smith and D. Foley, “Classical Thermodynamics and Economic General Equilibrium Theory,” Journal of Economic Dynamics and Control, 32: 1, 2008,7-65.

[8]   A. Golan, G. Judge and D. Miller, “Maximum Entropy Econometrics,” John Wiley and Sons, Chichester, 1996.

 
 
Top