SGRE  Vol.4 No.1 , February 2013
Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems
ABSTRACT

A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages; however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.


Cite this paper
M. Biswas, M. Azim, T. Saha, U. Zobayer and M. Urmi, "Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems," Smart Grid and Renewable Energy, Vol. 4 No. 1, 2013, pp. 122-132. doi: 10.4236/sgre.2013.41015.
References
[1]   K. Moslehi and R. Kumar, “A Reliability Perspective of the Smart Grid,” IEEE Transactions on Smart Grid, Vol. 1, No. 1, 2010, pp. 57-64. doi:10.1109/TSG.2010.2046346

[2]   P. Zhang, F. Li and N. Bhatt, “Next-Generation Monitoring, Analysis, and Control for the Future Smart Control Center,” IEEE Transactions on Smart Grid, Vol. 1, No. 2, 2010, pp. 186-192. doi:10.1109/TSG.2010.2053855

[3]   S. M. Amin and B. F. Wollenberg, “Toward a Smart Grid: Power Delivery for the 21st Century,” IEEE Power Energy Magazine, Vol. 3, No. 5, 2005, pp. 34-41. doi:10.1109/MPAE.2005.1507024

[4]   International Energy Agency, “Technology Roadmap: Smart Grids,” 2011. http://www.iea.org/publications/freepublications/publication/name,3972,en.html

[5]   US Department of Energy, “How the Smart Grid Promotes a Greener Future,” 2010. http://energy.gov/oe/downloads/how-smart-grid-promotes-greener-future

[6]   H. Gharavi and R. Ghafurian, “Smart Grid: The Electric Energy System of the Future,” IEEE Proceedings, Vol. 99, No. 6, 2011, pp. 917-921.

[7]   J. Xia and Y. Wang, “Secure Key Distribution for the Smart Grid,” IEEE Transactions on Smart Grid, Vol. 3, No. 3, 2012, pp. 1437-1443.

[8]   A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink and G. J. M. Smit, “Management and Control of Domestic Smart Grid Technology,” IEEE Transactions on Smart Grid, Vol. 1, No. 2, 2010, pp. 109-119. doi:10.1109/TSG.2010.2055904

[9]   A. Bose, “Smart Transmission Grid Applications and Their Supporting Infrastructure,” IEEE Transactions on Smart Grid, Vol. 1, No. 1, 2010, pp. 11-19. doi:10.1109/TSG.2010.2044899

[10]   B. P. Roberts and C. Sandberg, “The Role of Energy Storage in Development of Smart Grids,” IEEE Proceedings, Vol. 99, No. 6, 2011, pp. 1139-1144. doi:10.1109/JPROC.2011.2116752

[11]   M. S. Whittingham, “History, Evolution, and Future Status of Energy Storage,” IEEE Proceedings, Vol. 100, No. , 2012, pp. 1518-1534.

[12]   G. D. Rodriguez, “A Utility Perspective of the Role of Energy Storage in the Smart Grid,” 2010 IEEE Power and Energy Society General Meeting, Minneapolis, 25-29 July 2010, pp. 1-2. doi:10.1109/PES.2010.5589870

[13]   US Department of Energy, “Energy Storage—A Key Enabler of the Smart Grid,” 2009. http://www.netl.doe.gov/smartgrid/refshelf.html#White%20Papers

[14]   US Department of Energy, “The Smart Grid: An Introduction, 2008. http://energy.gov/oe/downloads/smart-grid-introduction-0

[15]   F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, et al., “Smart Transmission Grid: Vision and Framework,” IEEE Transactions on Smart Grid, Vol. 1, No. 2, 2010, pp. 168-177. doi:10.1109/TSG.2010.2053726

[16]   M. D. Hopkins, A. Pahwa and T. Easton, “Intelligent Dispatch for Distributed Renewable Resources,” IEEE Transactions on Smart Grid, Vol. 3, No. 2, 2012, pp. 1047-1054. doi:10.1109/TSG.2012.2190946

[17]   S. S. S. R. Depuru, L. Wang, V. Devabhaktuni and N. Gudi, “Smart Meters for Power Grid—Challenges, Issues, Advantages and Status,” 2011 IEEE/PES Power Systems Conference and Exposition (PSCE), Phoenix, 20-23 March 2011, pp. 1-7. doi:10.1109/PSCE.2011.5772451

[18]   D. Rua, D. Issicaba, F. J. Soares, P. M. R. Almeida, R. J. Rei and J. A. P. Lopes, “Advanced Metering Infrastructure Functionalities for Electric Mobility,” 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Porto, 11-13 October 2010, pp. 1-7.

[19]   H. Suleiman, K. A. Ahmed, N. Zafar, et al., “Inter-Domain Analysis of Smart Grid Domain Dependencies Using Domain-Link Matrices,” IEEE Transactions on Smart Grid, Vol. 3, No. 2, 2012, pp. 692-709. doi:10.1109/TSG.2011.2176151

[20]   Microsoft Power and Utilities, “Smart Energy Reference Architecture (SERA),” 2009.

[21]   A. P. S. Meliopoulos, G. Cokkinides, R. Huang, E. Farantatos, S. Choi, et al., “Smart Grid Technologies for Autonomous Operation and Control,” IEEE Transactions on Smart Grid, Vol. 2, No. 1, 2011, pp. 1-10. doi:10.1109/TSG.2010.2091656

[22]   A. Ipakchi and F. Albuyeh, “Grid of the Future,” IEEE Power Energy Magazine, Vol. 7, No. 2, 2009, pp. 52-62. doi:10.1109/MPE.2008.931384

[23]   R. A. F. Currie, G. W. Ault, C. E. T. Foote, N. M. McNeill, et al., “Smarter Ways to Provide Grid Connections for Renewable Generators,” IEEE PES General Meeting, Minneapolis, 25-29 July 2010, pp. 1-6.

[24]   Q. Pang, H. Gao and M. Xiang, “Design of Intelligent Terminal Unit for Smart Distribution Grid,” Proceedings of the IEEE China International Conference on Electricity Distribution (CICED), Nanjing, 13-16 September 2010, pp. 1-6.

[25]   F. Rahimi and A. Ipakchi, “Demand Response as a Market Resource under the Smart Grid Paradigm,” IEEE Transactions on Smart Grid, Vol. 1, No. 1, 2010, pp. 82-88. doi:10.1109/TSG.2010.2045906

[26]   E. Santacana, G. Rackliffe, L. Tang and X. Feng, “Getting Smart,” IEEE Power Energy Magazine, Vol. 8, No. 2, 2010, pp. 41-48. doi:10.1109/MPE.2009.935557

[27]   K. C. Divya and J. ?stergaard, “Battery Energy Storage Technology for Power Systems: An Overview,” Electric Power System Research, Vol. 79, No. 4, 2009, pp. 511-520. doi:10.1016/j.epsr.2008.09.017

[28]   M. M. Chowdhury, M. E. Haque, M. Aktarujjaman, M. Negnevitsky and A. Gargoom, “Grid Integration Impacts and Energy Storage Systems for Wind Energy Applications—A Review,” Proceedings of the IEEE PES General Meeting, San Diego, 24-29 July 2011, pp. 1-8.

[29]   S. C. Smith, P. K. Sen and B. Kroposki, “Advancement of Energy Storage Devices and Applications in Electrical Power System,” IEEE PES General Meeting, Pittsburgh, 20-24 July 2008, pp. 1-8.

[30]   S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, et al., “Energy Storage Systems for Transport and Grid Applications,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, 2010, pp. 3881-3895. doi:10.1109/TIE.2010.2076414

[31]   A. A. Thatte and L. Xie, “Towards a Uni?ed Operational Value Index of Energy Storage in Smart Grid Environment,” IEEE Transactions on Smart Grid, Vol. 3, No. 3, 2012, pp. 1418-1426.

[32]   W. Kempton and J. Tomic, “Vehicle-to-Grid Power Fundamentals: Calculating Capacity and Net Revenue,” Journal of Power Sources, Vol. 144, No. 1, 2005, pp. 268-279. doi:10.1016/j.jpowsour.2004.12.025

[33]   A. Bracale, P. Caramia and D. Proto, “Optimal Operation of Smart Grids Including Distributed Generation Units and Plug in Vehicles,” International Conference on Renewable Energies Power Quality (ICREPQ’11), Las Palmas de Gran Canaria, 13-15 April 2011, pp. 553-558.

[34]   M. M. Biswas, K. K. Das, I. A. Baqee, M. A. H. Sadi and H. M. S. Forhad, “Prospects of Renewable Energy and Energy Storage Systems in Bangladesh and Developing Economics,” Global Journal of Researches in Engineering (GJRE), Vol. 11, No. 5, 2011, pp. 23-31.

[35]   Y. M. Cheng, Y. C. Liu, S. C. Hung and C. S. Cheng, “Multi-Input Inverter for Grid-Connected Hybrid PV/ Wind Power System,” IEEE Transactions on Power Electronics, Vol. 22, No. 3, 2007, pp. 1070-1076. doi:10.1109/TPEL.2007.897117

[36]   J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, et al., “Power Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Transactions on Power Electronics, Vol. 53, No 4, 2006, pp. 1002-1016. doi:10.1109/TIE.2006.878356

[37]   R. B. Schainker, “Executive Overview: Energy Storage Options for a Sustainable Energy Future,” IEEE PES General Meeting, Palo Alto, June 2004, Vol. 2, pp. 2309-2314.

[38]   C. A. Hill, M. C. Such, D. Chen, J. Gonzalez, et al., “Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation,” IEEE Transactions on Smart Grid, Vol. 3, No. 2, 2012, pp. 850-857. doi:10.1109/TSG.2012.2190113

[39]   J. McDowall, “Nickel-Cadmium Batteries for Energy Storage Applications,” The 14th Annual Battery Conference on Applications and Advances, Long Beach, 12-15 January 1999, pp. 303-308.

[40]   J. P. Barton and D. G. Infield, “Energy Storage and Its Use with Intermittent Renewable Energy,” IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 2004, pp. 441-448. doi:10.1109/TEC.2003.822305

[41]   P. C. Symons, “Opportunities for Energy Storage in Stressed Electrical Supply Systems,” IEEE PES Summer Meeting, Vancouver, July 2001, Vol. 1, pp. 448-449.

[42]   D. Y. Goswami and F. Kreith, “Energy Conversion,” CRC Press, Boca Raton, 2007. doi:10.1201/9781420044324

[43]   A. A. H. Hussein, S. Harb, N. Kutkut, J. Shen and I. Batarseh, “Design Considerations for Distributed MicroStorage Systems in Residential Applications,” 32nd International Telecommunications Energy Conference (INTELEC), Orlando, 6-10 June 2010, pp. 1-6.

[44]   B. R. Williams and T. Hennessy, “Energy Oasis [Vanadium Redox Battery System in Power Distribution Application],” IEEE Power Engineer, Vol. 19, No. 1, 2005, pp. 28-31. doi:10.1049/pe:20050105

[45]   Nesscap Ultracapacitors Products, “(EDLC) Electric Double-Layer Capacitor,” 2012. http://www.nesscap.com/product/edlc_large1.jsp

[46]   D. Halber, “Researchers Fired Up over New Battery,” MIT Tech Talk, Vol. 50, No. 16, 2006, pp. 1-5. http://web.mit.edu/newsoffice/2006/batteries-0208.html

[47]   Maxwell Technologies, “An Overview of Ultracapacitor Technology,” 2012. http://www.maxwell.com/ultracapacitors/

[48]   R. D. Weir and C. W. Nelson, “Utilization of Poly (Ethylene Terephthalate) Plastic and Composition-Modi?ed Barium Titanate Powders in a Matrix that Allows Polarization and the Use of Integrated-Circuit Technologies for the Production of Lightweight Ultrahigh Electrical Energy Storage Units (EESU),” US Patent No. 7466536, 2008.

[49]   H. Pan, J. Li and Y. P. Feng, “Carbon Nanotubes for Supercapacitor,” Nanoscale Research Letters, Vol. 5, No. 3, 2010, pp. 654-668. doi:10.1007/s11671-009-9508-2

[50]   H. Zhang, G. P. Cao, Y. S. Yang and Z. N. Gu, “Comparison between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes,” Journal of Electrochemical Society, Vol. 155, No. 2, 2008, pp. 19-22. doi:10.1149/1.2811864

[51]   R. Hebner, J. Beno and A. Walls, “Flywheel Batteries Come Around Again,” IEEE Spectrum, Vol. 39, No. 4, 2002, pp. 46-51. doi:10.1109/6.9 93788

[52]   G. Cimuca, C. Saudemont, B. Robyns and M. M. Radulescu, “Control and Performance Evaluation of a Flywheel Energy Storage System Associated to a VariableSpeed Wind Generator,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, 2006, pp. 1074-1085. doi:10.1109/TIE.2006.878326

[53]   G. Cimuca, S. Breban, M. Radulescu, C. Saudemont, et al., “Design and Control Strategies of an Induction-Machine-Based Flywheel Energy Storage System Associated to a Variable-Speed Wind Generator,” IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 2010, pp. 526-534. doi:10.1109/TEC.2010.2045925

[54]   M. Subkhan and M. Komori, “New Concept for Flywheel Energy Storage System Using SMB and PMB,” IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 2011, pp. 1485-1488. doi:10.1109/TASC.2010.2098470

[55]   J. Lee, S. Jeong, Y. H. Han and B. J. Park, “Concept of Cold Energy Storage for Superconducting Flywheel Energy Storage System,” IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 2011, pp. 2221-2224. doi:10.1109/TASC.2010.2094177

[56]   T. Ichihara, K. Matsunaga, M. Kita, I. Hirabayashi, et al., “Application of Superconducting Magnetic Bearings to a 10 kWh-Class Flywheel Energy Storage System,” IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 2005, pp. 2245-2248. doi:10.1109/TASC.2005.849622

[57]   N. Hamsic, A. Schmelter, A. Mohd, et al., “Stabilising the Grid Voltage and Frequency in Isolated Power Systems Using a Flywheel Energy Storage System,” The Great Wall World Renewable Energy Forum, Beijing, 23-27 October 2006, pp. 1-6.

[58]   E. Ortjohann, N. Hamsic, A. Schmelter, et al., “Increasing Renewable Energy Penetration in Isolated Grids Using a Flywheel Energy Storage System,” International Conference on Power Engineering, Energy and Electrical Drives, Setubal, 12-14 April 2007, pp. 195-200.

[59]   M. Lazarewicz and J. Judson, “Performance of First 20 MW Commercial Flywheel Frequency Regulation Plant,” ESA 2011 Annual Meeting, Beacon Power Corporation, San Jose, June 2011.

[60]   D. Sutanto and K. W. E. Cheng, “Superconducting Magnetic Energy Storage Systems for Power System Applications,” International Conference on Applied Superconductivity and Electromagnetic Devices, Chengdu, 25-27 September 2009, pp. 377-380.

[61]   IEEE Task Force and T&D Committee, “Detailed Modeling of Superconducting Magnetic Energy Storage (SMES) System,” IEEE Transactions on Power Delivery, Vol. 21, No. 2, 2006, pp. 699-710. doi:10.1109/TPWRD.2005.864075

[62]   V. Karasik, K. Dixon, C. Weber, B. Batchelder, G. Campbell and P. Ribeiro, “SMES for Power Utility Applications: A Review of Technical and Cost Considerations,” IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, 1999, pp. 541-546. doi:10.1109/77.783354

[63]   M. G. Molina and P. E. Mercado, “Comparative Evaluation of Performance of a STATCOM and SSSC both Integrated with SMES for Controlling the Power System Frequency,” 2004 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, S?o Paulo, 8-11 November 2004, pp. 535-541.

[64]   M. G. Molina and P. E. Mercado, “New Energy Storage Devices for Applications on Frequency Control of the Power System Using FACTS Controllers,” Proceedings of X ERLAC, Iguazú, 18-22 May 2003, pp. 1-6.

[65]   Y. Tatusuta, S. Koso, H. Abe, M. Urata, H. Ohsaki, et al., “Development of SMES for Power System Control,” IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp. 693-698. doi:10.1109/TASC.2004.830033

[66]   S. Nomura, T. Shintomi, S. Akita, T. Nitta, R. Shimada and S. Meguro, “Technical and Cost Evaluation on SMES for Electric Power Compensation,” IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 2010, pp. 1373-1378. doi:10.1109/TASC.2009.2039745

[67]   Q. Li, “Status and Future Prospect of SMES for Grid Applications,” Advanced Microgrid Concepts and Technologies Workshops, Brookhaven National Laboratory, Washington DC, 2012.

[68]   F. Crotogino, K. U. Mohmeyer and R. Scharf, “Huntorf CAES: More than 20 Years of Successful Operation,” The Solution Mining Research Institute Spring Meeting, Orlando, 23-25 April 2001.

[69]   Electric Power Research Institute, “Compressed Air Energy Storage: 1994,” EPRI Brochure BR-102936.

[70]   W. Liu, Y. Yang, W. Zhang, G. Xu and Y. Wu, “A Novel Hybrid-Fuel Compressed Air Energy Storage System for China’s Situation,” Proceedings of the International Conference of Efficiency, Cost, Optimization, Simulation Environmental Impact Energy Systems, Perugia, 26-29 June 2012, pp. 1-16.

[71]   C. Bullough, C. Gatzen, C. Jakiel, M. Koller, et al., “Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy,” Proceedings of European Wind Energy Conference, EWEC, London, 22-25 November 2004, pp. 1-8.

[72]   C. Linnemann and M. W. Coney, “The Isoengine: Realization of a High-Efficiency Power Cycle Based on Isothermal Compression,” International Journal of Energy Technology and Policy, Vol. 3, No. 1-2, 2005, pp. 66-84. doi:10.1504/IJETP.2005.006740

[73]   Ridge Energy Storage & Grid Services L. P., “The Economic Impact of CAES on Wind in TX, OK and NM,” Texas State Energy Conservation Office, Austin, 2005.

[74]   P. Breeze, “Power Generation Technologies,” Elsevier, Boston, 2005.

[75]   P. Brown, J. Lopes and M. Matos, “Optimization of Pumped Storage Capacity in an Isolated Power System with Large Renewable Penetration,” IEEE Transactions on Power Systems, Vol. 23, No. 2, 2008, pp. 523-531. doi:10.1109/TPWRS.2008.919419

[76]   J. G. Gonzalez, R. D. L. Muela, L. Santos and A. Gonzalez, “Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market,” IEEE Transactions on Power Systems, Vol. 23, No. 2, 2008, pp. 460-468. doi:10.1109/TPWRS.2008.919430

[77]   A. Tuohy and M. O’Malley, “Impact of Pumped Storage on Power Systems with Increasing Wind Penetration,” IEEE Power & Energy Society General Meeting, Calgary, 26-30 July 2009, pp. 1-8.

[78]   W. Henson, “Optimal Battery/Ultracapacitor Storage Combination,” Journal of Power Sources, Vol. 179, No. 1, 2008, pp. 417-423. doi:10.1016/j.jpowsour.2007.12.083

[79]   H. Yoo, S. K. Sul, Y. Park and J. Jeong, “System Integration and Power Flow Management for a Series Hybrid Electric Vehicle Using Super-Capacitors and Batteries,” IEEE Transactions on Applied Superconductivity, Vol. 44, No. 1, 2008, pp. 108-114. doi:10.1109/TIA.2007.912749

[80]   L. Shuai, K. A. Corzine and M. Ferdowsi, “A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 2007, pp. 1516-1523. doi:10.1109/TVT.2007.896971

[81]   M. B. Camara, H. Gualous, F. Gustin and A. Berthon, “Design and New Control of DC/DC Converters to Share Energy between Supercapacitors and Batteries in Hybrid Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 57, No. 5, 2008, pp. 2721-2735. doi:10.1109/TVT.2008.915491

[82]   O. Briat, J. M. Vinassa, W. Lajnef, S. Azzopardi and E. Woirgard, “Principle, Design and Experimental Validation of a Flywheel-Battery Hybrid Source for Heavy-Duty Electric Vehicles,” IET Electric Power Applications, Vol. 1, No. 5, 2007, pp. 665-674. doi:10.1049/iet-epa:20060458

[83]   S. Lemofouet and A. Rufer, “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking (MEPT),” IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, 2006, pp. 1105-1115. doi:10.1109/TIE.2006.878323

[84]   T. Ise, M. Kita and A. Taguchi, “A Hybrid Energy Storage with a SMES and Secondary Battery,” IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 2005, pp. 1915-1918. doi:10.1109/TASC.2005.849333

 
 
Top