Some Explicitly Solvable SABR and Multiscale SABR Models: Option Pricing and Calibration

Show more

References

[1] P. S. Hagan, D. Kumar, A. S. Lesniewski and D. E. Woodward, “Managing Smile Risk,” Wilmott Magazine, September 2002, pp. 84-108.
http://www.wilmott.com/pdfs/021118-smile.eps

[2] G. Fiorentini, A. Leon and G. Rubio, “Estimation and Empirical Performance of Heston’s Stochastic Volatility Model: The Case of Thinly Traded Market,” Journal of Empirical Finance, Vol. 9, No 2, 2002, pp. 225-255.
doi:10.1016/S0927-5398(01)00052-4

[3] B. Chen, C. W. Oosterlee and S. van Weeren, “Analytical Approximation to Constant Maturity Swap Convexity Corrections in a Multi-Factor SABR Model,” International Journal of Theoretical and Applied Finance, Vol 13, No. 7, 2010, pp. 1019-1046.
doi:10.1142/S0219024910006091

[4] F. Mercurio and N. Moreni, “Inflation Modelling with SABR Dynamics,” Risk Magazine, 1 June 2009, pp. 106111.

[5] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “Calibration of a Multiscale Stochastic Volatility Model Using as Data European Option Prices,” Mathematical Methods in Economics and Finance, Vol. 3, No. 1, 2008, pp. 49-61.

[6] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “An Explicitly Solvable Multi-Scale Stochastic Volatility Model: Option Pricing and Calibration,” Journal of Futures Markets, Vol. 29, No. 9, 2009, pp. 862-893.
doi:10.1002/fut.20390

[7] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, “The Analysis of Real Data Using a Multiscale Stochastic Volatility Model,” European Financial Management, Vol. 19, No. 1, 2013, pp. 153-179.
doi:10.1111/j.1468-036X.2010.00584.x

[8] O. Islah, “Solving SABR in Exact Form and Unifying It with LIBOR Market Model,” SSRN eLibrary, 2009.
http://papers.ssrn.com/sol3/papers.cfm?astract-id=1489428

[9] P. S. Hagan, A. S. Lesniewski and D. E. Woodward, “Probability Distribution in the SABR Model of Stochastic Volatility,” 2005.
http://lesniewski.us/papers/working/ProbDistrForSABR.eps

[10] J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,” The Journal of Finance, Vol. 42, No. 2, 1987, pp. 281-300.
doi:10.1111/j.1540-6261.1987.tb02568.x

[11] B. A. Surya, “Two-Dimensional Hull-White Model for Stochastic Volatility and Its Nonlinear Filtering Estimation,” International Conference on Computational Science, ICCS 2011, Procedia Computer Science, Vol. 4, 2011, pp. 14311440.

[12] S. B. Yakubovich, “The Heat Kernel and Heisenberg Inequalities Related to the Kontorovich-Lebedev Transform,” Communications on Pure and Applied Analysis, Vol. 10, No. 2, 2011, pp. 745-760.
doi:10.3934/cpaa.2011.10.745

[13] T. Bjork and C. Landen, “On the Term Structure of Futures and forward Prices,” In: H. Geman, D. Madan, S. Pliska and T. Vorst, Eds., Mathematical Finance—Bachelier Congress 2000, Springer Verlag, Berlin, 2002, pp. 111-150.

[14] M. Musiela and M. Rutkowski, “Martingale Methods in Financial Modelling,” Springer-Verlag, Berlin, 2005.

[15] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Higher Trascendental Functions,” McGraw-Hill Book Company, New York, 1953.

[16] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Tables of Integral Transforms,” McGraw-Hill Book Company, New York, 1954.

[17] A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, “Tables of Integral Transforms,” McGraw-Hill Book Company, New York, 1954.

[18] R. Szmytkowski and S. Bielski, “Comment on the Orthogonality of the Macdonald Functions of Imaginary Order,” Journal of Mathematical Analysis and Applications, Vol. 365, No. 1, 2010, pp. 195-197.
doi:10.1016/j.jmaa.2009.10.035

[19] S. B. Yakubovich, “Beurling’s Theorems and Inversion Formulas for Certain Index Trasforms,” Opuscula Mathematica, Vol. 29, No. 1, 2009, pp. 93-110.

[20] S. Rabinowitz, “How to Find the Square Root of a Complex Number,” Mathematics and Informatics Quarterly, Vol. 3, 1993, pp. 54-56.

[21] A. Mordecai, “Nonlinear Programming: Analysis and Methods,” Dover Publishing, New York, 2003.