[1] Dupuis, J., Langenberg, C., Prokopenko, I., et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 42, 105-116. doi:10.1038/ng.520
[2] Voight, B.F., Scott, L.J., Steinthorsdottir, V., et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 42, 579-589. doi:10.1038/ng.609
[3] Morris, A.P., Voight, B.F., Teslovich, T.M., et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 44, 981-990. doi:10.1038/ng.2383
[4] Vassy J.L. and Meigs J.B. (2012) Is genetic testing useful to predict type 2 diabetes. Best Practice & Research: Clinical Endocrinology & Metabolism, 26, 189-201. doi:10.1016/j.beem.2011.09.002
[5] van de Bunt M. and Gloyn A.L. (2010) From genetic association to molecular mechanism. Current Diabetes Report, 10, 452-466. doi:10.1007/s11892-010-0150-2
[6] Consortium, E.P., Bernstein, B.E., Birney, E., et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74. doi:10.1038/nature11247
[7] Thurman, R.E., Rynes, E., Humbert, R., et al. (2012) The accessible chromatin landscape of the human genome. Nature, 489, 75-82. doi:10.1038/nature11232
[8] Neph, S., Vierstra, J., Stergachis, A.B., et al. (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83-90. doi:10.1038/nature11212
[9] Gerstein, M.B., Kundaje, A., Hariharan, M., et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100. doi:10.1038/nature11245
[10] Djebali, S., Davis, C.A., Merkel, A., et al. (2012) Landscape of transcription in human cells. Nature, 489, 101-108. doi:10.1038/nature11233
[11] Sanyal, A., Lajoie, B.R., Jain, G., et al. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109-113. doi:10.1038/nature11279
[12] Parikh, H., Lyssenko, V. and Groop, L.C.(2009) Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Medical Genomics, 2, 72.
[13] Marselli, L., Thorne, J., Dahiya, S., et al. (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One, 5, e11499. doi:10.1371/journal.pone.0011499
[14] Schadt, E.E., Monks, S.A., Drake, T.A., et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297-302. doi:10.1038/nature01434
[15] Cnop, M. (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochemical Society Transactions, 36, 348-352.
[16] Ghanaat-Pour, H., Huang, Z., Lehtihet, M., et al. (2007) Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Journal of Molecular Endocrinology, 39, 135-150. doi:10.1677/JME-07-0002
[17] Ghanaat-Pour, H. and Sjoholm, A. (2009) Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes/ Metabolism Research and Reviews, 25, 163-184. doi:10.1002/dmrr.896
[18] Simonis-Bik, A.M., Nijpels, G., van Haeften, T.W., et al. (2010) Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes, 59, 293-301. doi:10.2337/db09-1048
[19] Boesgaard, T.W., Grarup, N., Jorgensen, T., et al. (2010) Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia, 53, 1647-1655. doi:10.1007/s00125-010-1753-5
[20] Grarup, N., Rose, C.S., Andersson, E.A., et al. (2007) Studies of association of variants near the HHEX, CDKN2A/ B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: Validation and extension of genome-wide association studies. Diabetes, 56, 3105-3111. doi:10.2337/db07-0856
[21] Cunha, D.A., Hekerman, P., Ladriere, L., et al. (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. Journal of Cell Science, 121, 2308-2318.
[22] Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, V3, research0034.0031-research- 0034.0011.
[23] Schleinitz, D., Tonjes, A., Bottcher, Y., et al. (2010) Lack of Significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits. Hormone and Metabolic Research, 42, 14-22. doi:10.1055/s-0029-1233480
[24] Berditchevski, F. (2001) Complexes of tetraspanins with integrins: More than meets the eye. Journal of Cell Science, 114, 4143-4151.
[25] Jarikji, Z., Horb, L.D., Shariff, F., et al. (2009) The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds. Development, 136, 1791-1800. doi:10.1242/dev.032235
[26] Champy, M.F., Voci, L.L., Selloum, M., et al. (2011) Reduced body weight in male Tspan8-deficient mice. International Journal of Obesity, 35, 605-617. doi:10.1038/ijo.2010.165
[27] Haegebarth, A. and Clevers, H. (2009) Wnt signaling, lgr5, and stem cells in the intestine and skin. American Journal of Pathology, 174, 715-721. doi:10.2353/ajpath.2009.080758
[28] Carmon, K.S., Gong, X., Lin, Q., et al. (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 108, 11452-11457. doi:10.1073/pnas.1106083108
[29] Lowe, S.W. and Sherr, C.J. (2003) Tumor suppression by Ink4a-Arf: Progress and puzzles. Current Opinion in Genetics & Development, 13, 77-83. doi:10.1016/S0959-437X(02)00013-8
[30] Pruitt, K.D., Tatusova, T., Brown, G.R., et al. (2012) NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Research, 40, D130-D135.
[31] Watschinger, K., Keller, M.A., Golderer, G., et al. (2010) Identification of the gene encoding alkylglycerol mono-oxygenase defines a third class of tetrahydrobiopterindependent enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107, 13672-13677. doi:10.1073/pnas.1002404107
[32] Pascoe, L., Tura, A., Patel, S.K., et al. (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes, 56, 3101-3104. doi:10.2337/db07-0634