ABC  Vol.3 No.1 , February 2013
Ultradian oscillators of the circadian clock in Saccharomyces cerevisiae
ABSTRACT

The yeast, Saccharomyces cerevisiae, has an ENOX1 activity with a period length of 24 min similar to that of other eukaryotes. In contrast to other eukaryotes, however, Saccharomyces cerevisiae has a second ENOX1-like activity with a period length of 25 min. The latter is distinguishable from the traditional ENOX1 on the basis of the longer period length along with resistance to an ENOX1 inhibitor, simalikalactone D, and failure to be phased by melatonin. In addition, two periods are apparent in measurements of oxygen consumption indicating that the consumption of oxygen to water occurs independently by homodimers of both of the two forms of ENOX. Based on the measurements of glyceraldehyde-3- phosphate dehydrogenase, S. cerevisiae exhibits circadian activity maxima at 24 and 25 h together with a 40 h period possibly representing the 40 min metabolic rhythm of yeast not observed in our measurement of oxygen consumption and normally observed only with continuous cultures. The findings are indicative of at least three independent time-keeping systems being operative in a single cell.


Cite this paper
Dick, S. , Ryuzoji, A. , Morré, D. and Morré, D. (2013) Ultradian oscillators of the circadian clock in Saccharomyces cerevisiae. Advances in Biological Chemistry, 3, 59-69. doi: 10.4236/abc.2013.31008.
References
[1]   Morré, D.J. and Morré, D.M. (2003) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, aging and neurodegenera tive disease. Free Radical Research, 37, 9795-808. doi:10.1080/1071576031000083107

[2]   Morré, D.J. (1995) NADH oxidase activity of HeLa plasma membranes inhibited by the anticancer sulfony lurea N-(4-methylphenylsulfonyl)-N-(4chlorophenyl)urea (LY181984) at an external site. Biochimica et Biophysica Acta, 1240, 201-208. doi:10.1016/0005-2736(95)00199-9

[3]   Lambeth, J.D., Cheng, G., Arnold, R.S. and Edens, W.A. (2000) Novel homologs of gp91phox. Trends in Biological Sciences, 25, 459-461. doi:10.1016/S0968-0004(00)01658-3

[4]   Morré, D.J., Guo, F. and Morré, D.M. (2003) An ag ing-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q. Mo lecular and Cellular Biochemistry, 254, 101-109. doi:10.1023/A:1027301405614

[5]   Chueh, P.J., Kim, C., Cho, N., Morré, D.M. and Morré, D.J. (2002) Molecular cloning and characterization of a tumor-associated, growth-related and time-keeping hydroquinone (NADH) oxidase (NOX) of the HeLa cell surface. Biochemistry, 41, 3732-3741. doi:10.1021/bi012041t

[6]   Jiang, Z., Gorenstein, N.M., Morré, D.M. and Morré, D.J. (2008) Molecular cloning and characterization of a can didate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Bio chemistry, 47, 14028-14038. doi:10.1021/bi801073p

[7]   Tang, X., Chueh, P.J., Jiang, Z., Layman, S., Martin, B, Kim, C., et al. (2010) Essential role of copper in the activity and regular periodicity of a recombinant, tumor associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide thiol interchange activity (ENOX2). Journal of Bioenergetics and Biomembrances, 42, 355-360. doi:10.1007/s10863-010-9305-8

[8]   Brightman, A.O., Wang, J., Miu, R.K., Sun, I.L., Barr, R., Crane, F.L., et al. (1992) A growth factor and hormone stimulated NADH oxidase from rat liver plasma mem brane. Biochimica et Biophysica Acta, 1105, 109-117. doi:10.1016/0005-2736(92)90168-L

[9]   Kelker, M., Kim, C., Chueh, P.J., Guimont, R., Morré, D.M. and Morré, D.J. (2001) Cancer isoform of a tumor associated cell surface NADH oxidase (tNOX) has properties of a prion. Biochemistry, 40, 7351-7354. doi:10.1021/bi010596i

[10]   Kishi, T., Morré, D.M. and Morré, D.J. (1999) The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity. Biochimica et Biophysica Acta, 1412, 66-77. doi:10.1016/S0005-2728(99)00049-3

[11]   Bridge, A., Barr, R. and Morré, D.J. (2000) The plasma membrane NADH oxidase of soybean has vitamin K1 hydroquinone oxidase activity. Biochimica et Biophysica Acta, 1463, 448-458. doi:10.1016/S0005-2736(99)00239-4

[12]   Morré, D.J., Chueh, P.J., Lawler, J. and Morré, D.M. (1998) The sulfonylureas-inhibited NADH oxidase activity of HeLa plasma membranes has properties of a protein disulfide-thiol oxido-reductase with protein disulfide thiol interchange activity. Journal of Bioenergetics and Biomembrances, 30, 477-487. doi:10.1023/A:1020594214379

[13]   Morré, D.J., Chueh, P.J., Pletcher, J., Tang, X., Wu, L.Y. and Morré, D.M. (2002) Biochemical basis for the bio logical clock. Biochemistry, 41, 11941-11945. doi:10.1021/bi020392h

[14]   Kim, C. and Morré, D.J. (2004) Prion proteins and ECTO-NOX proteins exhibit similar oscillating redox ac tivities. Biochemical and Biophysical Research Communications, 315, 1140-1146. doi:10.1016/j.bbrc.2004.02.007

[15]   Morré, D.J. (1998) NADH oxidase: A multifunctional ectoprotein of the eukaryotic cell surface. In: Asard, H., Bérczi, A. and Caubergs, R., Eds., Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Kluwer Academic Publishers, Dordrecht, 121 156.

[16]   Foster, K., Anward, N., Pogue, R., Morré, D.M., Keenan, T.W. and Morré, D.J. (2003) Decomposition analyses applied to a complex ultradian biorhythm: The oscillating NADH oxidase activity of plasma membranes having a potential time-keeping (clock) function. Nonlinearity in Biology, Toxicology and Medicine, 1, 51-70. doi:10.1080/15401420390844465

[17]   Shinohara, M.L., Loros, J.J. and Dunlap, J.C. (1998) Glyceraldhyde-3-phosphate is regulated on a daily basis by the circadian clock. Journal of Biological Chemistry, 273, 446-452. doi:10.1074/jbc.273.1.446

[18]   Morré, D.J. and Morré, D.M. (2003) The plasmamem brane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light. Journal of Photochemistry and Photobiology B, 70, 7-12. doi:10.1016/S1011-1344(03)00023-X

[19]   Morré, D.J. and Greico, P.A. (1999) Glaucarubolone and simalikalactone D, respectively, preferentially inhibit auxin-induced and constitutive components of plant cell enlargement and the plasma membrane NADH oxidase. International Journal of Plant Science, 160, 291-297. doi:10.1086/314133

[20]   Lloyd, D., Eshantha, L., Salgado, J., Turner, M.P. and Murray, D.B. (2002) Respiratory oscillations in yeast: Clock-driven mitochondrial cycles of energization. FEBS Letters, 519, 41-44. doi:10.1016/S0014-5793(02)02704-7

[21]   Murray, D.B., Roller, S., Kuriyama, H. and Lloyd, D. (2001) Clock control of ultradian respiratory oscillation found during yeast continuous culture. Journal of Bacteriology, 183, 7253-7259. doi:10.1128/JB.183.24.7253-7259.2001

[22]   Murray, D.B., Klevecz, R.R. and Lloyd, D. (2003) Gen eration and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Experimental Cell Re search, 287, 10-15. doi:10.1016/S0014-4827(03)00068-5

[23]   Enright, J.T. (1997) Heavy water slows biological timing processes. Zeitschrift für vergleichende Physiologie, 72, 1-16. doi:10.1007/BF00299200

[24]   Bruce, V.G. and Pittendrigh, C.S. (1960) Temperature independence in unicellular “clock”. Journal of Cellular and Comparative Physiology, 56, 25-31. doi:10.1002/jcp.1030560105

[25]   Kim, C., Layman, S., Morré, D.M. and Morré, D.J. (2006) Structural changes revealed by Fourier transform infrared and circular dichroism spectroscopic analyses underlie tNOX periodic oscillations. Dose Response, 3, 391-413. doi:10.2203/dose-response.003.03.008

[26]   Chueh, P.J., Morré, D.J., Wilkinson, F.E., Gibson, J. and Morré, D.M. (1997) A 33.5 kDa heat-and protease resistant NADH oxidase inhibited by capsaicin from sera of cancer patients. Archives of Biochemistry and Biophysics, 342, 38-47. doi:10.1006/abbi.1997.9992

[27]   del Castillo-Olivares, A., Yantiri, F., Chueh, P.J., Wang, S., Sweeting, M., Sedlak, D., et al. (1998) A drug-responsive and protease-resistant peripheral NADH oxidase complex from the surface of HeLa S cells. Archives of Biochemistry and Biophysics, 358, 125-140. doi:10.1006/abbi.1998.0823

[28]   Sedlak, D., Morré, D.M. and Morré, D.J. (2001) A drug unresponsive and protease-resistant CNOX protein from human sera. Archives of Biochemistry and Biophysics, 386, 106-116. doi:10.1006/abbi.2000.2180

[29]   McAlister, L. and Holland, M.J. (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. Journal of Biological Chemistry, 260, 15019-15027.

[30]   Boucherie, H., Bataille, N., Fitch, I.T., Perrot, M. and Tuite, M.F. (1995) Differential synthesis of glyceralde hyde-3-phosphate dehydrogenase polypeptides in stressed yeast cells. FEMS Microbiology Letters, 125, 127-133. doi:10.1111/j.1574-6968.1995.tb07348.x

[31]   Morré, D.J., Orczyk, J., Hignite, H. and Kim, C. (2008) Regular oscillatory behavior of aqueous solutions of CuII salts related to effects on equilibrium dynamics of or tho/para hydrogen spin isomers of water. Journal of In organic Biochemistry, 102, 260-267. doi:10.1016/j.jinorgbio.2007.08.008

[32]   Satroutdinov, A.D., Kuriyama, H. and Kobayashi, H. (1992) Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiology Letters, 98, 261-268. doi:10.1111/j.1574-6968.1992.tb05525.x

[33]   Keulers, M., Suzuki, T., Satroutinov, A.D. and Duriyama, H. (1996) Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiology Letters, 142, 253-258. doi:10.1111/j.1574-6968.1996.tb08439.x

[34]   Adams, C.A., Kuriyama, H., Lloyd, D. and Murray, D.B. (2003) The Gts1 protein stabilizes the autonomous oscillator in yeast. Yeast, 20, 463-470. doi:10.1002/yea.976

[35]   Klevecz, R.R., Bolen, J., Forrest, G. and Murray, D.B. (2004) A genome wide oscillation in transcription gates DNA replication and cell cycle. Proceedings of the National Academy of Sciences USA, 101, 1200-1205. doi:10.1073/pnas.0306490101

[36]   Mitsui, K., Taguchi, S. and Tsurugi, K. (1994) The GTS1gene, which contains a Gly-Thre repeat, affects the timing of budding and cell size of the yeast Saccharomy ces cerevisiae. Molecular and Cellular Biology, 14, 5569-5578.

[37]   Morré, D.J., Kim, C. and Hicks-Berger, C. (2006) ATP dependent and drug inhibited vesicle enlargement recon stituted using synthetic lipids and recombinant proteins. BioFactors, 28, 105-117. doi:10.1002/biof.5520280205

[38]   Hicks-Berger, C. and Morré, D.J. (2006) Inside-out but not right side-out plasma membrane vesicles from soy bean enlarge when treated with ATP + 2,4-D as deter mined by electron microscopy and light scattering: evidence for involvement of a plasma membrane AAA ATPase. BioFactors, 28, 91-104. doi:10.1002/biof.5520280204

[39]   Auderset, G. and Morré, D.J. (2006) ATP and growth substance-dependent cell-free enlargement of plasma membrane vesicles from soybean. BioFactors, 28, 83-90. doi:10.1002/biof.5520280203

[40]   Adams, A.E. and Pringle, J.R. (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. Journal of Cellular Biology, 98, 934-945. doi:10.1083/jcb.98.3.934

[41]   Cabib, E., Bowers, B., Sburlati, A. and Silverman, S.J. (1988) Fungal cell wall synthesis: The construction of a biological structure. Microbiology Sciences, 5, 370-375.

 
 
Top