APE  Vol.3 No.1 , February 2013
The Impact of Prior Knowledge about Visual Feedback on Motor Performance and Learning
Abstract: Performers adopt strategies to use visual information if they know that it will be available whereas uncertainty about its availability leads performers to prepare for the worst-case scenario. Since the impact of prior knowledge has generally been examined as performance-based changes across a series of trials, this study investigates the impact of prior knowledge on learning. Participants practiced target-directed aiming movements either with cues about the random availability of vision, no cues regarding vision or in blocks of stable visual information availability. Participants who received prior knowledge were more efficient in preparing their acquisition movements when vision was available. In retention and transfer, all participants were able to take advantage of the visual information available in order to optimize performance outcome. Thus, adult performers appear able to change their strategic behavior quickly to accommodate new sensory and prior knowledge conditions.
Cite this paper: Burkitt, J. , Grierson, L. , Staite, V. , Elliott, D. & Lyons, J. (2013). The Impact of Prior Knowledge about Visual Feedback on Motor Performance and Learning. Advances in Physical Education, 3, 1-9. doi: 10.4236/ape.2013.31001.

[1]   Bard, C., Hay, L., & Fleury, M. (1985). Role of peripheral vision in the directional control of rapid aiming movements. Canadian Journal of Psychology, 39, 151-161. doi:10.1037/h0080120

[2]   Carlton, L. G. (1981). Visual information: The control of aiming movements. Quarterly Journal of Experimental Psychology, 33A, 87-93.

[3]   Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189, 403-410. doi:10.1007/s00221-008-1436-3

[4]   Elliott, D., & Allard, F. (1985). The utilization of visual feedback information during rapid pointing movements. Quarterly Journal of Experimental Psychology, 37(A), 407-425.

[5]   Elliott, D., Chua, R., Pollock, B. J., & Lyons, J. (1995). Optimizing the use of vision in manual aiming: The role of practice. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 48(A), 72-83. doi:10.1080/14640749508401376

[6]   Elliott, D., & Hansen, S. (2010). Visual regulation of aiming: A comparison of methods. Behavior Research Methods, 42, 1087-1095. doi:10.3758/BRM.42.4.1087

[7]   Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 1023-1044. doi:10.1037/a0020958

[8]   Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36, 339-351. doi:10.3200/JMBR.36.3.339-351

[9]   Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s two-component model of goal directed aiming. Psychological Bulletin, 127, 342-357. doi:10.1037/0033-2909.127.3.342

[10]   Elliott, D., & Madalena, J. (1987). The influence of premovement visual information on manual aiming. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 39A, 541-559. doi:10.1080/14640748708401802

[11]   Ghahramani, Z., Wolpert, D. M., & Jordan, M. I. (1996). Generalization of local remappings of the visuomotor coordinate transformation. Journal of Neuroscience, 16, 7085-7096.

[12]   Grierson, L. E. M., & Elliott, D. (2009). Goal-directed aiming and the relative contribution of two online control processes. American Journal of Psychology, 122, 309-324.

[13]   Hansen, S., Glazebrook, C., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60, 200-208. doi:10.1037/cjep2006019

[14]   Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199-206. doi:10.1007/s00221-010-2303-6

[15]   Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998). Gaze-centred remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience, 18, 1583-1594.

[16]   Kawato, M., & Wolpert, D. M. (1998). Internal models for motor control. Novartis Foundation Symposium, 218, 219-304.

[17]   Keele, S. W., & Posner, M. I. (1968). Processing visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155-158. doi:10.1037/h0025754

[18]   Khan, M. A., Elliott, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34, 45-57. doi:10.1080/00222890209601930

[19]   Khan, M., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P. M., Hansen, S., & Weeks, D. J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 30, 1106- 1221. doi:10.1016/j.neubiorev.2006.05.002

[20]   Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor skill acquisition. Journal of Experimental Psychology: Learning, Memory and Cognition, 9, 730-746. doi:10.1037/0278-7393.9.4.730

[21]   Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340-370. doi:10.1037/0033-295X.95.3.340

[22]   Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments and Computers, 19, 449- 456. doi:10.3758/BF03205613

[23]   Mon-Williams, M., & Bingham, G. P. (2007). Calibrating reach to visual targets. Journal of Experimental Psychology: Human Perception and Performance, 33, 645-656. doi:10.1037/0096-1523.33.3.645

[24]   Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415-451. doi:10.1037/0033-295X.86.5.415

[25]   Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729-R732. doi:10.1016/S0960-9822(01)00432-8

[26]   Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1-119.

[27]   Zelaznik, H. N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 15, 217-236.