[1] Bard, C., Hay, L., & Fleury, M. (1985). Role of peripheral vision in the directional control of rapid aiming movements. Canadian Journal of Psychology, 39, 151-161. doi:10.1037/h0080120
[2] Carlton, L. G. (1981). Visual information: The control of aiming movements. Quarterly Journal of Experimental Psychology, 33A, 87-93.
[3] Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189, 403-410. doi:10.1007/s00221-008-1436-3
[4] Elliott, D., & Allard, F. (1985). The utilization of visual feedback information during rapid pointing movements. Quarterly Journal of Experimental Psychology, 37(A), 407-425.
[5] Elliott, D., Chua, R., Pollock, B. J., & Lyons, J. (1995). Optimizing the use of vision in manual aiming: The role of practice. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 48(A), 72-83. doi:10.1080/14640749508401376
[6] Elliott, D., & Hansen, S. (2010). Visual regulation of aiming: A comparison of methods. Behavior Research Methods, 42, 1087-1095. doi:10.3758/BRM.42.4.1087
[7] Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 1023-1044. doi:10.1037/a0020958
[8] Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36, 339-351. doi:10.3200/JMBR.36.3.339-351
[9] Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s two-component model of goal directed aiming. Psychological Bulletin, 127, 342-357. doi:10.1037/0033-2909.127.3.342
[10] Elliott, D., & Madalena, J. (1987). The influence of premovement visual information on manual aiming. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 39A, 541-559. doi:10.1080/14640748708401802
[11] Ghahramani, Z., Wolpert, D. M., & Jordan, M. I. (1996). Generalization of local remappings of the visuomotor coordinate transformation. Journal of Neuroscience, 16, 7085-7096.
[12] Grierson, L. E. M., & Elliott, D. (2009). Goal-directed aiming and the relative contribution of two online control processes. American Journal of Psychology, 122, 309-324.
[13] Hansen, S., Glazebrook, C., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60, 200-208. doi:10.1037/cjep2006019
[14] Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199-206. doi:10.1007/s00221-010-2303-6
[15] Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998). Gaze-centred remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience, 18, 1583-1594.
[16] Kawato, M., & Wolpert, D. M. (1998). Internal models for motor control. Novartis Foundation Symposium, 218, 219-304.
[17] Keele, S. W., & Posner, M. I. (1968). Processing visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155-158. doi:10.1037/h0025754
[18] Khan, M. A., Elliott, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34, 45-57. doi:10.1080/00222890209601930
[19] Khan, M., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P. M., Hansen, S., & Weeks, D. J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 30, 1106- 1221. doi:10.1016/j.neubiorev.2006.05.002
[20] Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor skill acquisition. Journal of Experimental Psychology: Learning, Memory and Cognition, 9, 730-746. doi:10.1037/0278-7393.9.4.730
[21] Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340-370. doi:10.1037/0033-295X.95.3.340
[22] Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments and Computers, 19, 449- 456. doi:10.3758/BF03205613
[23] Mon-Williams, M., & Bingham, G. P. (2007). Calibrating reach to visual targets. Journal of Experimental Psychology: Human Perception and Performance, 33, 645-656. doi:10.1037/0096-1523.33.3.645
[24] Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415-451. doi:10.1037/0033-295X.86.5.415
[25] Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729-R732. doi:10.1016/S0960-9822(01)00432-8
[26] Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1-119.
[27] Zelaznik, H. N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior, 15, 217-236.