[1] Karban, R. and Baldwin, I.T. (1997) Induced responses to herbivory. University Press of Chicago, Chicago.
[2] Tollrian, R. and Harvell, C.D. (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ.
[3] Sultan, S.E. (2000) Phenotypic plasticity for plant development, function, and life-history. Trends in Plants Science, 5, 537-542. doi:10.1016/S1360-1385(00)01797-0
[4] Dewitt, T.J. and Scheiner, S.M. (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York.
[5] West-Eberhard, M.J. (1986) Alternative adaptations, speciation, and phylogeny. Proceedings of the National Academy of Sciences of the USA, 83, 1388-1392. doi:10.1073/pnas.83.5.1388
[6] West-Eberhard M.J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249-278. doi:10.1146/annurev.es.20.110189.001341
[7] Moran, N.A. (1992). The evolutionary maintenance of alternative phenotypes. The American Naturalist, 139, 971-989. doi:10.1086/285369
[8] Zangerl, A.R. and Rutledge, C.E. (1996) The probability of attack and patterns of constitutive and induced defense: A test of optimal defense theory. American Naturalist, 147, 599-608. doi:10.1086/285868
[9] Karban, R., Agrawal, A.A. and Mangel, M. (1997). The benefits of induced defenses against herbivores. Ecology, 78, 1351-1355. doi:10.1890/0012-9658(1997)078[1351:TBOIDA]2.0.CO;2
[10] Stearns, S.C. (1992). The evolution of life histories. Oxford University Press, Oxford.
[11] Steiner, U.K. and Pfeiffer, T. (2007) Optimizing time and resource allocation trade-offs for investment into morphological and behavioral defense. The American Naturalist, 169, 118-129. doi:10.1086/509939
[12] Boucher, D.H., James, S. and Keeler, K.H. (1982) The ecology of mutualism. Annual Review of Ecology and Systematics, 13, 315-347. doi:10.1146/annurev.es.13.110182.001531
[13] Pierce, N.E., Kitching, R.L., Buckley, R.C., Taylor, M.F.J. and Benbow, K. (1987) Costs and benefits of cooperation between the Australian lycaenid butterfly Jalmenus evagoras and its attendant ants. Behavioral Ecology and Sociobiology, 21, 237-248. doi:10.1007/BF00292505
[14] Huxley, C.R and Cutler, D.F. (1991) Ant-plant interactions. Oxford University Press, New York.
[15] Morales, M.A. (2000) Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology, 81, 482-489.
[16] Koptur, S. (1992) Interactions between insects and plants mediated by extrafloral nectaries. In: Bernays, E., Ed. CRC Series on Insect/Plant Interactions, Volume 4, CRC Press, Boca Raton, 85-132.
[17] Janzen, D.H. (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution, 20, 249-275. doi:10.2307/2406628
[18] Beattie, A.J. (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511721878
[19] Ness, J.H. (2003) Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia, 134, 210-218.
[20] Vesprini, J.L., Galetto, L. and Bernardello, G. (2003) The beneficial effects of ants on the reproductive success of Dyckia floribunda (Bromeliaceae), an extrafloral nectary plant. Canadian Journal of Botany, 81, 24-27. doi:10.1139/b03-003
[21] Bugg, R.L. and Ellis, R.T. (1990) Insects associated with cover crops in Massachusetts. Biology, Agriculture and Horticulture, 7, 47-68.
[22] Kost, C. and Heil, M. (2005) Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic and Applied Ecology, 6, 237-248. doi:10.1016/j.baae.2004.11.002
[23] Wagner, D. and Kay, A. (2002) Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research, 4, 293-305.
[24] Rosenweig, M.L. (2002). The distraction hypothesis depends on relatively cheap extrafloral nectaries. Evolutionary Ecology Research, 4, 307-311.
[25] Bentley, B.L. (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 8, 407-427. doi:10.1146/annurev.es.08.110177.002203
[26] Elias T.S. (1983). Extrafloral nectaries: their structure and distribution. In: Bentley, B.L. and Elias, T.S., Eds. The Biology of Nectaries, Columbia University Press, New York, 174-203.
[27] Heil, M., Fiala, B., Baumann, B. and Linsenmair, K.E. (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology, 14, 749-757. doi:10.1046/j.1365-2435.2000.00480.x
[28] Heil, M., Hilpert, A., Fiala, B. and Linsenmair, K.E. (2001) Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia, 126, 404-408. doi:10.1007/s004420000534
[29] Doak, P., Wagner, D. and Watson, A. (2007) Variable extrafloral nectary expression and its consequences in quaking aspen. Canadian Journal of Botany, 85, 1-9. doi:10.1139/b06-137
[30] Agrawal, A.A. and Rutter, M.T. (1998) Dynamic anti- herbivore defense in ant-plants: The role of induced responses. Oikos, 83, 227-236. doi:10.2307/3546834
[31] Heil, M. and McKey, D. (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 34, 425-453. doi:10.1146/annurev.ecolsys.34.011802.132410
[32] Mondor, E.B. and Addicott, J.F. (2003) Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecology Letters, 6, 495-497. doi:10.1046/j.1461-0248.2003.00457.x
[33] Mondor, E.B., Tremblay, M.N. and Messing, R.H. (2006) Extrafloral nectary phenotypic plasticity is damage- and resource-dependent in Vicia faba. Biology Letters, 2, 583-585. doi:10.1098/rsbl.2006.0527
[34] Jaber, L.R. and Vidal, S. (2009) Interactions between an endophytic fungus, aphids and extrafloral nectaries: Do endphytes induce extrafloral-mediated defenses in Vicia faba? Functional Ecology, 23, 707-714. doi:10.1111/j.1365-2435.2009.01554.x
[35] Pulice, C.E. and Packer, A.A. (2008) Simulated herbivory induces extrafloral nectary production in Prunus avium. Functional Ecology, 22, 801-807. doi:10.1111/j.1365-2435.2008.01440.x
[36] Wackers, F.L. and Wunderlin, R. (1999) Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomologia Experimentalis et Applicata, 91, 149-154. doi:10.1046/j.1570-7458.1999.00477.x
[37] Paiva, E.A.S., Buono, R.A. and Delgado, M.N. (2007) Distribution and structural aspects of extrafloral nectaries in Cedrela fissilis (Meliaceae). Flora—Morphology, Distribution, Functional Ecology of Plants, 202, 455-461. doi:10.1016/j.flora.2006.11.001
[38] Laird, R.A. and Addicott, J.F. (2007). Arbuscular mycorrhizal fungi reduce the construction of extrafloral nectaries in Vicia faba. Oecologia, 152, 541-551. doi:10.1007/s00442-007-0676-4
[39] Erith, A.G. (1930) The inheritance of colour, size, and form of seeds, and of flower colour in Vicia faba L. Genetica, 12, 477-510. doi:10.1007/BF01486760
[40] Ingels, C.A. (1998) Cover cropping in vineyards: A grower’s handbook. University of California, Oakland.
[41] Koptur, S. (1989) Is extrafloral nectar production an inducible defense? In: Bock, J.H. and Linhart, Y.B., Eds., The Evolutionary Ecology of Plants, Westview, Boulder, 323-339.
[42] Katayama, N. and Suzuki, N. (2004) Role of extrafloral nectaries of Vicia faba in attraction of ants and herbivore exclusion by ants. Entomological Science, 7, 119-124. doi:10.1111/j.1479-8298.2004.00057.x
[43] SAS Institute Inc. (2008) JMP, version 8.0. Cary.
[44] Tiffin, P. and Inouye, B. (2000) Measuring tolerance to herbivory: Accuracy and precision of estimates made using natural versus imposed damage. Evolution, 54, 1024-1029.
[45] Heil, M. (2009) Damaged-self recognition in plant herbivore defence. Trends in Plant Science, 14, 356-363. doi:10.1016/j.tplants.2009.04.002
[46] Quinn, G. and Keough, M. (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511806384
[47] Koptur, S. Rico-Gray, V. and Palacios-Rios, M. (1998) Ant protection of the nectaried fern Polypodium plebeium in central Mexico. American Journal of Botany, 85, 736-739. doi:10.2307/2446544
[48] O’Dowd, D.J. (1979) Foliar nectar production and ant activity on a neotropical tree, Ochroma pyramidale. Oecologia, 43, 233-248. doi:10.1007/BF00344773
[49] Southwick, E.E. (1984) Photosynthate allocation to floral nectar a neglected energy investment. Ecology, 65, 1775-1779. doi:10.2307/1937773
[50] Pyke, G.H. (1991) What does it cost a plant to produce floral nectar? Nature, 350, 58-59. doi:10.1038/350058a0
[51] Radhika, V., Kost, C., Mithofer, A. and Boland, W. (2010) Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences of the USA, 107, 17228-17233. doi:10.1073/pnas.1009007107
[52] Zangerl, A.R. and Bazzaz, F.A. (1992) Theory and pattern in plant defense allocation. In: Fritz, R. and Simms, E.L., Eds., Plant Resistance to Herbivores and Pathogens, Uninversity of Chicago Press, Chicago, 363-392.
[53] Cohen, D. (1994) Modelling the coexistence of annual and perennial plants in temporally varying environments. Plant Species Biology, 9, 1-10. doi:10.1111/j.1442-1984.1994.tb00075.x
[54] Wackers, F.L., Zuber, D., Wunderlin, R. and Keller, F. (2001) The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Annals of Botany, 87, 365-370. doi:10.1006/anbo.2000.1342
[55] McNaughton, S.J. (1983) Compensatory plant growth as a response to herbivory. Oikos, 40, 329-336. doi:10.2307/3544305
[56] Trumble, J.T., Kolodny-Hirsch, D.M. and Ting, I.P. (1993) Plant compensation for arthropod herbivory. Annual Review of Entomology, 38, 93-119. doi:10.1146/annurev.en.38.010193.000521
[57] Bronstein, J.L., Alarcon, R. and Geber, M. (2006) The evolution of plant-insect mutualisms. New Phytologist, 172, 412-428. doi:10.1111/j.1469-8137.2006.01864.x
[58] Stephenson, A.G. (1982) The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology, 63, 663-669. doi:10.2307/1936786
[59] De la Fuente, M.A.S. and Marquis, R.J. (1999) The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree. Oecologia, 118, 192-202. doi:10.1007/s004420050718
[60] Bugg, R.L., Ellis, R.T. and Carlson, R.W. (1989) Ichneumonidae (Hymenoptera) using extrafloral nectar of faba bean (Vicia faba L., Fabaceae) in Massachusetts. Biological Agriculture and Horticulture, 6, 107-114. doi:10.1080/01448765.1989.9754509
[61] Limburg, D.D. and Rosenheim, J.A. (2001) Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environmental Entomology, 30, 595-604. doi:10.1603/0046-225X-30.3.595
[62] Rose, U.S.R., Lewis, J. and Tumlinson, J.H. (2006) Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Functional Ecology, 20, 67-74. doi:10.1111/j.1365-2435.2006.01071.x
[63] Bronstein, J.L. (1994) Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9, 214- 217. doi:10.1016/0169-5347(94)90246-1
[64] Thompson, J.N. (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago.
[65] Chamberlain, S.A. and Holland, J.N. (2009) Quantitative synthesis of context-dependency in ant-plant protection mutualisms. Ecology, 90, 2384-2392. doi:10.1890/08-1490.1
[66] Rutter, M.T. and Rausher, M.D. (2004) Natural selection on extrafloral nectar production in Chamaecrista fasciulata: The costs and benefits of a mutualism trait. Evolution, 58, 2657-2668.