ANP  Vol.2 No.1 , February 2013
Influence of CdS Nano Additives on the Thermal Conductivity of Poly(vinyl chloride)/CdS Nanocomposites

PVC/CdS nanocomposites have been prepared by solution casting method taking 2, 4, 6 and 8 wt% of CdS nanoparticles. PVC/CdS nanocomposites were characterized through TEM measurement. The measurement of effective thermal conductivity of PVC/CdS nanocomposites has also been done using transient plane source (TPS) method. The effects of concentration of CdS nanoparticles and temperature on the effective thermal conductivity of polymer PVC/CdS nanocomposites have been studied. The variation of effective thermal conductivity with the concentration of filler particles and temperature has also been discussed in terms of dispersion of filler particles into polymer matrix and phonon scattering mechanism, respectively.

Cite this paper
Patidar, D. and Saxena, N. (2013) Influence of CdS Nano Additives on the Thermal Conductivity of Poly(vinyl chloride)/CdS Nanocomposites. Advances in Nanoparticles, 2, 11-15. doi: 10.4236/anp.2013.21003.
[1]   D. Y. Godovsky, “Device Applications of Polymer Nanocomposites,” Advanced Polymer Science, Vol. 153, 2000, pp. 163-205. doi:10.1007/3-540-46414-X_4

[2]   M. Chen, Y. Xie, Z. Qiao, Y. Zhu and Y. Qia, “Synthesis of Short CdS Nanofiber/Poly(styrene-altmaleic anhydride) Composites Using Gamma-Irradiation,” Journal of Material Chemistry, Vol. 10, No. 2, 2000, pp. 329-332. doi:10.1039/a907743j

[3]   Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities,” Advanced Materials, Vol. 12, No. 17, 2000, pp. 1295-1298. doi:10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B

[4]   X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber, “Single-Nanowire Electrically Driven Lasers,” Nature, Vol. 421, No. 6920, 2003, pp. 241-245. doi:10.1038/nature01353

[5]   N. Tokio, F. Keisuke and K. Akio, “High-Efficiency Cad mium-Free Cu(In,Ga)Se2 Thin Film Solar Cells with Chemically Deposited ZnS Buffer Layers”, IEEE Transactions on Electronic Devices, Vol. 46, No. 10, 1999, pp. 2093 2097. doi:10.1109/16.792002

[6]   V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, “Light Emitting Diodes Made from Cadmium Selenide Nano crystals and a Semiconducting Polymer,” Nature, Vol. 370, No. 6488, 1994, pp. 354-357. doi:10.1038/370354a0

[7]   W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science, Vol. 295, No. 5564, 2002, pp. 2425-2427. doi:10.1126/science.1069156

[8]   J. Ramsden and M. Grutzel, “Photoluminescence of Small Cadmium Sulphide Particles,” Journal of Chemical Society: Faraday Transaction, Vol. 80, 1984, pp. 919-933. doi:10.1039/f19848000919

[9]   Z. Deng, L. Cao, F. Tang and B. Zou, “A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis,” Journal of Physics and Chemistry B, Vol. 109, No. 35, 2005, pp. 16671-16675. doi:10.1021/jp052484x

[10]   M. T. F. Arguelles, A. Yakovlev, R. A. Sperling, C. Luccardini, S. Gaillard, A. Sanz Medel, J. M. Mallet, J. C. Brochon, A. Feltz, M. Oheim and W. J. Parak, “Synthesis and Characterization of Polymer-Coated Quantum Dots with Integrated Acceptor Dyes as Fret-Based Nanoprobes,” Nano Letters, Vol. 7, No. 9, 2007, pp. 2613 2617. doi:10.1021/nl070971d

[11]   W. H. Starnes Jr., “Structural and Mechanistic Aspects of the Thermal Degradation of Poly(vinyl chloride),” Progress in Polymer Science, Vol. 27, No. 10, 2002, pp. 2133-2170. doi:10.1016/S0079-6700(02)00063-1

[12]   M. Sowe, M. Polaskova, I. Kuritka, T. Sedlacek and M. Merchan, “Analysis of Antibacterial Action of Polyvinyl Chloride Surface Modified with Gentian Violet,” International Journal of Polymer Analysis and Characterization, Vol. 14, No. 8, 2009, pp. 678-685. doi:10.1080/10236660903298327

[13]   F. Gong, M. Feng, C. Zhao, S. Zhang and M. Yang, “Thermal Properties of Poly(vinyl chloride)/Montmoril lonite Nanocomposites,” Polymer Degradation and Stability, Vol. 84, No. 2, 2004, pp. 289-294. doi:10.1016/j.polymdegradstab.2003.11.003

[14]   I. S. Elashmawi, N. A. Hakeem, L. K. Marei and F. F. Hanna, “Structure and Performance of ZnO/PVC Nanocomposites,” Physica B, Vol. 405, No. 19, 2010, pp. 4163 4169. doi:10.1016/j.physb.2010.07.006

[15]   U. Ritter, P. Scharff, T. M. Pinchuk, O. P. Dmytrenko, L. A. Bulavin, M. P. Kulish, Y. I. Prylutskyy, M. A. Zabo lotnyy, Y. E. Grabovsky, M. M. Bilyy, A. G. Rugal, A. M. Shut and V. V. Shlapatska, “Radiation Modification of Polyvinyl Chloride Nanocomposites with Multi-Walled Carbon Nanotubes,” Material Science and Engineering Technology, Vol. 41, 2010, pp. 675-681.

[16]   M. Chipara, J. Cruz, E. R. Vega, J. Alarcon, T. Mion, D. M. Chipara, E. Ibrahim, S. C. Tidrow and D. Hui, “Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties,” Journal of Nanomaterials, Vol. 2012, 2012, pp. 1-6. doi:10.1155/2012/435412

[17]   N. Chen, C. Wan, Y. Zhang and Y. Zhang, “Effect of Nano CaCO3 on Mechanical Properties of PVC and PVC/ Blendex Blend,” Polymer Testing, Vol. 23, No. 2, 2004, pp. 169-174. doi:10.1016/S0142-9418(03)00076-X

[18]   D. Mitra, I. Chakraborty and S. P. Moulik, “Studies on ZnS Nanoparticles Prepared in Aqueous Sodium Dodecylsulphate (SDS) Micellar Medium,” Colloid Journal, Vol. 67, No. 4, 2005, pp. 445-450. doi:10.1007/s10595-005-0117-1

[19]   W. E. Mahmoud and A. A. A. Ghamdi, “The Influence of Cd(ZnO) on the Structure, Optical and Thermal Stabilities of Polyvinyl Chloride Nanocomposites,” Polymer Composites, Vol. 32, No. 7, 2011, pp. 1143-1147. doi:10.1002/pc.21132

[20]   V. Mathur, M. Dixit, K. S. Rathore, N. S. Saxena and K. B. Sharma, “Tensile Study of PVC-CdS Semiconducting Nanocomposite,” Optoelectronic and Advanced Material: Rapid Communication, Vol. 3, No. 7, 2009, pp. 685-687.

[21]   C. Wan, G. Tian, N. Cui, Y. Zhang and Y. Zhang, “Processing Thermal Stability and Degradation Kinetics of Poly(vinyl chloride)/Montmorillonite Composites,” Journal of Applied Polymer Science, Vol. 92, No. 3, 2006, pp. 1521-1526. doi:10.1002/app.20086

[22]   D. Patidar, S. Agrawal and N. S. Saxena, “Storage Modulus and Glass Transition Behaviour of CdS/PMMA Nano-Composites,” Journal of Experimental Nanoscience, Vol. 6, No. 4, 2011, pp. 441-449. doi:10.1080/17458080.2010.509870

[23]   S. Agrawal, D. Patidar and N. S. Saxena, “Glass Transition Temperature and Thermal Stability of ZnS/PMMA Nanocomposites,” Phase Transition, Vol. 84, No. 11-12, 2011, pp. 888-900. doi:10.1080/01411594.2011.563152

[24]   S. Agrawal, D. Patidar and N. S. Saxena, “Effect of ZnS Nano-Filler and Temperature on Mechanical Properties of Poly(methyl methacrylate),” Journal of Applied Polymer Science, Vol. 123, No. 4, 2012, pp. 2431-2438. doi:10.1002/app.34800

[25]   G. E. Gustafsson, “Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials,” Review of Scientific and Instruments, Vol. 62, No. 3, 1991, pp. 797-804. doi:10.1063/1.1142087

[26]   R. Mangal, N. S. Saxena, M. S. Sreekala, S. Thomas and K. Singh, “Thermal Properties of Pineapple Leaf Fiber Reinforced Composites,” Material Science Engineering A, Vol. 339, No. 1-2, 2003, pp. 281-285. doi:10.1016/S0921-5093(02)00166-1

[27]   C. L. Choy, “Thermal Conductivity of Polymers,” Polymer, Vol. 18, No. 10, 1977, pp. 984-1004. doi:10.1016/0032-3861(77)90002-7

[28]   I. I. Perpechoko, “An Introduction to Polymer Physics,” Mir, Moscow, 1981.

[29]   N. S. Saxena, P. Pradeep, G. Mathew, S. Thomas, M. Gustafsson and S. E. Gustafsson, “Thermal Conductivity of Styrene Butadiene Rubber Compounds with Natural Rubber Prophylactics Waste as Filler,” European Polymer Journal, Vol. 35, No. 9, 1999, pp. 1687-1693. doi:10.1016/S0014-3057(98)00247-X

[30]   N. S. Saxena, “Thermal and Mechanical Behaviour of Polymer Nanocomposite,” Journal of Polymer Engineering, Vol. 30, No. 9, 2010, pp. 575-586. doi:10.1515/POLYENG.2010.30.9.575

[31]   Z. Han and A. Fina, “Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review,” Progress in Polymer Science, Vol. 36, No. 7, 2011, pp. 914-944. doi:10.1016/j.progpolymsci.2010.11.004