[1] Kumar, A., Takada, Y. and Boriek, A.M. (2004) Nuclear factor-κB: Its role in health and disease. Journal of Molecular Medicine, 82, 434-448. doi:10.1007/s00109-004-0555-y
[2] Hayden, M.S. and Ghosh, S. (2004) Signaling to NF kappaB. Genes & Development, 18, 2195-2224. doi:10.1101/gad.1228704
[3] Jackman, R.E. and Kandarian, S.C. (2004) The molecular basis of skeletal muscle atrophy. American Journal of Physiology, 287, C834-C843. doi:10.1152/ajpcell.00579.2003
[4] Cai, D., Frantz, J.D., Tawa Jr., N.E., Melendez, P.A., Oh, B.-C., Lidov, H.G.W., Hasselgren, P.-O., Frontera, W.R., Lee, J., Gloss, D.J. and Shoelson, S.E. (2004) IKKbeta/ NF-kappaB activation causes severe muscle wasting in mice. Cell, 119, 285-298. doi:10.1016/j.cell.2004.09.027
[5] Mourkioti, F., Kratsios, P., Luedde, T., Song, Y.H., Delafontaine, P., Adami, R., Parente, V., Bottinelli, R., Pasparakis, M. and Rosenthal, N. (2006) Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. Journal of Clinical Investigation, 116, 2945-2954. doi:10.1172/JCI28721
[6] Bar-Shai, M., Carmeli, E. and Reznick, A.Z. (2005) The role of NF-κB in protein breakdown in immobilization, aging, and exercise. New York Academy of Sciences, 1057, 431-447.
[7] Salminen, A., Huuskonen, J., Ojala, J., Kauppinen, A., Kaarniranta, K. and Suuronen, T. (2008) Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Research Reviews, 7, 83-105. doi:10.1016/j.arr.2007.09.002
[8] Taylor, D.M., Maxwell, M.M., Luthi-Carter, R. and Kazantsev, A.G. (2008) Biological and potential therapeutic roles of sirtuin deacetylases. Cellular and Molecular Life Sciences, 65, 4000-4018. doi:10.1007/s00018-008-8357-y
[9] Yeung, F., Hoberg, J., Ramsey, C., Keller, M., Jones, D., Frye, R. and Mayo, M. (2004) Modulation of NF-kappaB dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal, 23, 2369-2380. doi:10.1038/sj.emboj.7600244
[10] Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M.M., Mills, K.D., Patel, P., Hsu, J.T., Hong, A.L., Ford, E., Cheng, H.L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., Auerbach, W., Valenzuela, D., Karow, M., Hottiger, M.O., Hursting, S., Barrett, J.C., Guarente, L., Mulligan, R., Demple, B., Yancopoulos, G.D. and Alt, F.W. (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124, 315-329. doi:10.1016/j.cell.2005.11.044
[11] Lombard, D.B. (2009) Sirtuins at the breaking point: SIRT6 in DNA repair. Aging, 1, 12-16.
[12] Michishita, E., McCord, R.A., Berber, E., Kioi, M., Pa dilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L., Barrett, J.C., Chang, H.Y., Bohr, V.A., Ried, T., Gozani, O. and Chua, K.F. (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 452, 492-496. doi:10.1038/nature06736
[13] McCord, R.A., Michishita, E., Hong, T., Berber, E., Boxer, L.D., Kusumoto, R., Guan, S., Shi, X., Gozani, O., Burlingame, A.L., Bohr, V.A. and Chua, K.F. (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY), 1, 109-121.
[14] Cameron, T.P., Lattuada, C.P., Kornreich, M.R. and Tarone, R.E. (1982) Longevity and reproductive comparisons for male ACI and Sprague-Dawley rat aging colonies. Laboratory Animal Science, 32, 495-499.
[15] Li, Q. and Verma, I.M. (2002) NF-kappaB regulation in the immune system. Nature Reviews Immunology, 2, 725 734. doi:10.1038/nri910
[16] Schmitz, M.L. and Baeuerle, P.A. (1991) The p65 subunit is responsible for the strong transcription activating potential of NF-kappa. The EMBO Journal, 10, 3805-3817.
[17] Kawahara, T.L.A., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., McCord, R.A., Ongaigui, K.C.L., Boxer, L.D., Chang, H.Y. and Chua, K.F. (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell, 136, 62-74. doi:10.1016/j.cell.2008.10.052
[18] Delano, M.J. and Moldawer, L.L. (2006) The origins of cachexia in acute and chronic inflammatory diseases. Nutrition in Clinical Practice, 21, 68-81. doi:10.1177/011542650602100168
[19] Morley, J.E., Thomas, D.R. and Wilson, M.-M. (2006) Cachexia: Pathophysiology and clinical relevance. The American Journal of Clinical Nutrition, 83l, 735-743.
[20] Greenlund, L.J. and Nair, K.S. (2003) Sarcopenia-conse quences, mechanisms, and potential therapies. Mechanisms of Ageing and Development, 124, 287-299. doi:10.1016/S0047-6374(02)00196-3
[21] Thomas, C.R. (2007) Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clinical Nutrition, 26, 389-399. doi:10.1016/j.clnu.2007.03.008
[22] Ventadour, S. and Attaix, D. (2006) Mechanisms of ske letal muscle atrophy. Current Opinion in Rheumatology, 18, 631-635. doi:10.1097/01.bor.0000245731.25383.de
[23] Eley, H.L. and Tisdale, M.J. (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. The Journal of Biological Chemistry, 282, 7087-7097. doi:10.1074/jbc.M610378200
[24] Zaidi, G., Panda, H. and Supakar, P.C. (2005) Increased phosphorylation and decreased level of IkBx during aging in rat liver. Biogerontology, 6, 141-145. doi:10.1007/s10522-005-3459-5
[25] Kaufmann, J.A., Bickfore, P.C. and Taglialatela, G. (2002) Free radical-dependent changes in constitutive Nuclear factor kappa B in the aged hippocampus. Neuroreport, 13, 1917-1920. doi:10.1097/00001756-200210280-00017
[26] Korhonen, P., Helenius, M. and Salminen, A. (1997) Age related changes in the regulation of transcription factor NF-kappa G in rat brain. Neuroscience Letters, 225, 61 64. doi:10.1016/S0304-3940(97)00190-0
[27] Helenius, M., Hanninen, M., Lehtinen, S.K. and Salminen, A. (1996) Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NF-κB transcription factor in mouse cardiac muscle. Journal of Molecular and Cellular Cardiology, 28, 487-498. doi:10.1006/jmcc.1996.0045
[28] Helenius, M., Kyrylenko, S., Vehvilainen, P. and Salminen, A. (2001) Characterization of aging-associated up regulation of constitutive nuclear factor-kappa B binding activity. Antioxidants & Redox Signaling, 3, 147-156. doi:10.1089/152308601750100669
[29] Jia, G., Su, L., Singhai, S. and Liu, X. (2012) Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Molecular and Cellular Biochemistry, 364, 345-350. doi:10.1007/s11010-012-1236-8
[30] Kawahara, T.L.A., Rapicavoli, N.A., Wu, A.R., Qu, K., Quake, S.R. and Chang, H.Y. (2011) Dynamic chromatin localization of sirt6 shapes stress and aging-related transcriptional networks. PLOS Genetics, 7, Article ID: e1002153. doi:10.1371/journal.pgen.1002153