NS  Vol.5 No.2 , February 2013
Curvature mass inside hadrons: Linking gravity to QCD
Abstract: Following the basic ideas of general relativity and quantum field theory, combing two kinds of standard models, the curvature mass inside hadrons is discussed and developed, in which the standard model of particle physics and the standard model of cosmos are naturally unified under the mathematical framework of geometric field theory, where the phenomena of dark matter and dark energy could get naturally theoretical interpretation.
Cite this paper: Ye, F. (2013) Curvature mass inside hadrons: Linking gravity to QCD. Natural Science, 5, 182-186. doi: 10.4236/ns.2013.52028.

[1]   Chou Cottingham, W. N. and Greenwood, D. A. (2007) An introduction to the Standard Model of Particle Physics. 2nd Edition, Cambridge University Press, Cambridge. doi:10.1017/CBO9780511791406

[2]   Weinberg, S. (1972) Gravitation and cosmology. Wiley, New York.

[3]   Nakamura, K., et al., Particle Data Group (2010) Review of particle physics. Journal of Physics G: Nuclear and Particle Physics, 37, 075021. doi:10.1088/0954-3899/37/7A/075021

[4]   The ATLAS Collaboration (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716, 1-29.

[5]   The CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716, 30-61.

[6]   Dirac, P. A. M. (1935) The principles of quantum mechanics. Oxford University Press, Oxford.

[7]   Hestenes, D. (2003) Spacetime physics with geometric algebra. American Journal of Physics, 71, 691-714. doi:10.1119/1.1571836

[8]   Doran, C. J. L. and Lasenby, A. N. (2003) Geometric algebra for physicists. Cambridge University Press, Cambridge.

[9]   Lasenby, A., Doran, C. and Gull, S. (1998) Gravity, gauge theories and geometric algebra. Philosophical Transactions of the Royal Society of London, A356, 487-582.

[10]   Zee, A. (2010) Quantum field theory in a nutshell. 2nd Edition, Princeton University Press, Princeton.

[11]   Penrose, R. (2004) The road to reality: A complete guide to the laws of the universe. Jonathan Cape, London.

[12]   Connes, A. (1995) Noncommutative geometry and reality. Journal of Mathematical Physics, 36, 6194-6231. doi:10.1063/1.531241

[13]   Ye, F. Y. (2009) A Clifford-Clifford-Riemannian physical unification and fractal dynamics. Chaos, Solitons and Fractals, 41, 2301-2305. doi:10.1016/j.chaos.2008.09.004

[14]   Li, M., et al. (2011) Dark energy. Communications in Theoretical Physics, 56, 525-604. doi:10.1088/0253-6102/56/3/24

[15]   Ye, F. Y. (2009) From chaos to unification: U Theory vs. M Theory. Chaos, Solitons and Fractals, 42, 89-93. doi:10.1016/j.chaos.2008.10.030