ABC  Vol.3 No.1 , February 2013
Effects of laminar shear stress versus resveratrol on the citrulline-NO cycle in endothelial cells
ABSTRACT

Laminar shear stress (LSS) due to pulsatile blood flow enhances endothelial function by multiple mechanisms including NO production. Red wine and its constituent, resveratrol, have also been postulated to provide vascular protective effects. The aim of the present study was to compare the effects of mechanical LSS and pharmacological resveratrol treatments on the endothelial citrulline-NO cycle. Human umbilical vein endothelial cells (HUVECs) were treated with LSS (12 dyn·cm-2) or resveratrol (25 - 100 μM). The expressions of argininosuccinate synthetase 1 (ASS1), argininosuccinate lyase (ASL), nitric oxide synthase 3 (NOS3) and cationic amino acid transporter 1 (CAT1), and the production of NO were determined. The expressions of Kruppel-like factor (KLF) 2 and KLF4 as upstream regulators of ASS1 and NOS3 were also analyzed. LSS strongly increased the mRNA levels of ASS1 (8.3 fold) and NOS3 (5.4 fold) without significant effects on ASL and CAT1 mRNAs. Resveratrol increased the ASS1 mRNA level in a dose-dependent manner up to 3.8 fold at 100 μM. The effects of resveratrol on the expressions of KLF2 and KLF4 mRNAs were smaller than those of LSS. Protein levels of ASS1 and NOS3, and NO production were markedly increased by LSS but resveratrol (50 μM) increased only ASS1 protein level. The results of the current study showed that LSS had greater effects on the citrulline-NO cycle activity leading to NO production, compared to resveratrol. Because resveratrol was not so effective at stimulating the endothelial citrulline-NO cycle, further studies are needed to find more potent drugs that increase the expression of ASS1 and NOS3 genes.


Cite this paper
Jang, S. and Boo, Y. (2013) Effects of laminar shear stress versus resveratrol on the citrulline-NO cycle in endothelial cells. Advances in Biological Chemistry, 3, 18-25. doi: 10.4236/abc.2013.31003.
References
[1]   Vandenbroucke, E., Mehta D., Minshall R. and Malik A.B. (2008) Regulation of endothelial junctional perme ability. Annals of the New York Academy of Sciences, 1123, 134-145. doi:10.1196/annals.1420.016

[2]   Vita, J.A. (2011) Endothelial function. Circulation, 124, e906-e912. doi:10.1161/CIRCULATIONAHA.111.078824

[3]   Furchgott, R.F. and Zawadzki J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373-376. doi:10.1038/288373a0

[4]   Bredt, D.S. (1999) Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radical Research, 31, 577-596. doi:10.1080/10715769900301161

[5]   Boo, Y.C. and Jo H. (2003) Flow-dependent regulation of endothelial nitric oxide synthase: Role of protein kinases. American Journal of Physiology—Cell Physiology, 285, C499-C508. http://www.ncbi.nlm.nih.gov/pubmed/12900384

[6]   Mun, G.I., Lee S.J., An S.M., Kim I.K. and Boo Y.C. (2009) Differential gene expression in young and sense cent endothelial cells under static and laminar shear stress conditions. Free Radical Biology & Medicine, 47, 291 299. doi:10.1016/j.freeradbiomed.2009.04.032

[7]   Flam, B.R., Eichler D.C. and Solomonson L.P. (2007) Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide, 17, 115-121. doi:10.1016/j.niox.2007.07.001

[8]   Simini, B. (2000) Serge renaud: From French paradox to Cretan miracle. Lancet, 355, 48. doi:10.1016/S0140-6736(05)71990-5

[9]   Opie, L.H. and Lecour S. (2007) The red wine hypothesis: From concepts to protective signalling molecules. European Heart Journal, 28, 1683-1693. doi:10.1093/eurheartj/ehm149

[10]   Wang, Z., Zou, J., Cao, K., Hsieh, T.C., Huang, Y. and Wu, J.M. (2005) Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lpid levels. International Journal of Molecular Medicine, 16, 533-540. http://www.ncbi.nlm.nih.gov/pubmed/16142383

[11]   Petrovski, G., Gurusamy, N. and Das, D.K. (2011) Res veratrol in cardiovascular health and disease. Annals of the New York Academy of Sciences, 1215, 22-33. doi:10.1111/j.1749-6632.2010.05843.x

[12]   Wu, J.M. and Hsieh T.C. (2011) Resveratrol: A cardio protective substance. Annals of the New York Academy of Sciences, 1215, 16-21. doi:10.1111/j.1749-6632.2010.05854.x

[13]   Dekker, R.J., van Soest, S., Fontijn, R.D., Salamanca, S., de Groot, P.G., VanBavel, E., Pannekoek, H. and Hor revoets, A.J. (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood, 100, 1689-1698. doi:10.1182/blood-2002-01-0046

[14]   Parmar, K.M., Larman, H.B., Dai, G., Zhang, Y., Wang, E.T., Moorthy, S.N., Kratz, J.R., Lin, Z., Jain, M.K., Gimbrone Jr., M.A. and Garcia-Cardena, G. (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. Journal of Clinical Investigation, 116, 49-58. doi:10.1172/JCI24787

[15]   Mun, G.I. and Boo Y.C. (2012) A regulatory role of Kruppel-like factor 4 in endothelial argininosuccinate synthetase 1 expression in response to laminar shear stress. Biochemical and Biophysical Research Communications, 420, 450-455. doi:10.1016/j.bbrc.2012.03.016

[16]   Villarreal Jr., G., Zhang, Y., Larman, H.B., Gracia-Sancho, J., Koo, A. and Garcia-Cardena, G. (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Bio chemical and Biophysical Research Communications, 391, 984-989. doi:10.1016/j.bbrc.2009.12.002

[17]   Gracia-Sancho, J., Villarreal Jr., G., Zhang, Y. and Gar cia-Cardena, G. (2010) Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovascular Research, 85, 514-519. doi:10.1093/cvr/cvp337

[18]   Boo, Y.C., Sorescu, G., Boyd, N., Shiojima, I., Walsh, K., Du, J. and Jo, H. (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxidesynthase at Ser 1179 by Akt-independent mechanisms: Role of protein kinase A. Journal of Biological Chemistr, 277, 3388 3396. doi:10.1074/jbc.M108789200

[19]   Denizot, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271-277. doi:10.1016/0022-1759(86)90368-6

[20]   Liu, W. and Saint, D.A. (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical Biochemistry, 302, 52 59. doi:10.1006/abio.2001.5530

[21]   Boo, Y.C., Tressel, S.L. and Jo, H. (2007) An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor. Nitric Oxide, 16, 306-312. doi:10.1016/j.niox.2006.09.004

[22]   Mun, G.I., An, S.M., Park, H., Jo, H. and Boo, Y.C. (2008) Laminar shear stress inhibits lipid peroxidation induced by high glucose plus arachidonic acid in endothelial cells. American Journal of Physiology—Heart and Circulatory Physiology, 295, H1966-H1973. doi:10.1152/ajpheart.00727.2008

[23]   Cooke, J.P. and Tsao, P.S. (1997) Arginine: A new therapy for atherosclerosis? Circulation, 95, 311-312. doi:10.1161/01.CIR.95.2.311

[24]   McDonald, K.K., Zharikov, S., Block, E.R. and Kilberg, M.S. (1997) A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxidesynthase may explain the “arginine paradox”. Journal of Biological Chemistry, 272, 31213-31216. doi:10.1074/jbc.272.50.31213

[25]   Goodwin, B.L., Solomonson, L.P. and Eichler, D.C. (2004) Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. Journal of Biological Chemistry, 279, 18353-18360. doi:10.1074/jbc.M308160200

[26]   Erez, A., Nagamani, S.C., Shchelochkov, O.A., Premku mar, M.H., Campeau, P.M., Chen, Y., Garg, H.K., Li, L., Mian, A., Bertin, T.K., Black, J.O., Zeng, H., Tang, Y., Reddy, A.K., Summar, M., O’Brien, W.E., Harrison, D.G., Mitch, W.E., Marini, J.C., Aschner, J.L., Bryan, N.S. and Lee, B. (2011) Requirement of argininosucci natelyase for systemic nitric oxide production. Nature Medicine, 17, 1619-1626. doi:10.1038/nm.2544

[27]   Li, C., Huang, W., Harris, M.B., Goolsby, J.M. and Venema, R.C. (2005) Interaction of the endothelial nitric oxide synthase with the CAT-1 arginine transporter enhances NO release by a mechanism not involving arginine transport. Biochemical Journal, 386, 567-574. doi:10.1042/BJ20041005

[28]   Wallerath, T., Deckert, G., Ternes, T., Anderson, H., Li, H., Witte, K. and Forstermann, U. (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation, 106, 1652-1658. doi:10.1161/01.CIR.0000029925.18593.5C

[29]   Amin-Hanjani, S., Stagliano, N.E., Yamada, M., Huang, P.L., Liao, J.K. and Moskowitz, M.A. (2001) Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke, 32, 980-986. doi:10.1161/01.STR.32.4.980

[30]   Hernandez-Perera, O., Perez-Sala, D., Navarro-Antolin, J., Sanchez-Pascuala, R., Hernandez, G., Diaz, C. and Lamas, S. (1998) Effects of the 3-hydroxy-3-methylglu taryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. Journal of Clinical Investigation, 101, 2711-2719. doi:10.1172/JCI1500

[31]   Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G.B., Das, H., Banerjee, P., Kumar, A. and Jain, M.K. (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 112, 720-726. doi:10.1161/CIRCULATIONAHA.104.525774

[32]   Padilla, J., Harris, R.A., Rink, L.D. and Wallace, J.P. (2008) Characterization of the brachial artery shear stress following walking exercise. Vascular Medicine, 13, 105 111. doi:10.1177/1358863x07086671

 
 
Top