[1] M. C. Slattery and R. B. Bryan, “Hydraulic Conditions for Rill Incision under Simulated Rainfall: A Laboratory Experiment,” Earth Surface Processes and Landforms, Vol. 17, No. 2, 1992, pp. 127-146. doi:10.1002/esp.3290170203
[2] G. Govers, “Relationship between Discharge, Velocity and Flow Area for Rills Eroding Loose, Non-Layered Materials,” Earth Surface Processes and Landforms, Vol. 17, No. 5, 1992, pp. 515-528. doi:10.1002/esp.3290170510
[3] T. W. Lei, M. A. Nearing, K. Haghighi and V. F. Bralts, “Rill Erosion and Morphological Evolution: A Simulation Model,” Water Resources Research, Vol. 34, No. 11, 1998, pp. 3157-3168. doi:10.1029/98WR02162
[4] M. A. Nearing, L. D. Norton, D. A. Bulgakov and G. A. Larionov, “Hydraulics and Erosion in Eroding Rills,” Water Resources Research, Vol. 33, No. 4, 1997, pp. 865-876. doi:10.1029/97WR00013
[5] D. T. Favis-Mortlock, “An Evolutionary, Approach to the Simulation of Rill Initiation and Development,” In: R. H. Abrahart, Ed., Proceedings of the 1st International Conference on GeoComputation, University of Leeds, Leeds, Vol. 1, 1996, pp. 248-281.
[6] D. T. Favis-Mortlock, “A Self-Orgnizing Dynamic System Approach to the Simulation of Rill Development on Hillslopes,” Computers and Geosciences, Vol. 24, No. 4, 1998, pp. 353-372. doi:10.1016/S0098-3004(97)00116-7
[7] J. Peosen, J. Ngehtergaele, G. Verstraeten and C. Valentin, “Gully Erosion and Environmental Change: Importance and Research Needs,” Catena, Vol. 50, No. 2-4, 2003, pp. 91-133. doi:10.1016/S0341-8162(02)00143-1
[8] G. A. Mancilla, S. Chen and D. K. McCool, “Rill Density Prediction and Flow Velocity Distributions on Agricultural Areas in the Pacific Northwest,” Soil & Tillage Research, Vol. 84, No. 1, 2005, pp. 54-66. doi:10.1016/j.still.2004.10.002
[9] C. Berger, M. Schulze, D. Rieke-Zapp and F. Schlunegger, “Rill Development and Soil Erosion: A Laboratory Study of Slope and Rainfall Intensity,” Earth Surface Processes and Landforms, Vol. 35, No. 12, 2010, pp. 1456-1467.
[10] R. B. Bryan, “Soil Erosion under Simulated Rainfall in the Field and Laboratory: Variability of Erosion under Controlled Conditions,” In: Tacconi, Eds., Erosion and Sediment Transport Measurement, Walling, IAHS Press, Wallingford, pp. 391-404.
[11] G. A. Mancilla, S. Chen and D. K. McCool, “Rill Density Prediction and Flow Velocity Distribution on Agricultural Areas in the Pacific Northwest,” Soil and Tillage Research, Vol. 84, No. 1, 2005, pp. 54-66. doi:10.1016/j.still.2004.10.002
[12] G. Govers, “Rill Erosion on Arable Land in Central Belgium. Rates, Controls and Predictability,” Catena, Vol. 18, No. 2, 1991, pp. 133-155. doi:10.1016/0341-8162(91)90013-N
[13] D. T. Favis-Mortlock, J. Boardman, A. J. Parsons and B. Lascelles, “Emergence and Erosion: A Model for Rill Initiation and Development,” Hydrological Processes, Vol. 14, No. 11-12, 2000, pp. 2173-2205. doi:10.1002/1099-1085(20000815/30)14:11/12<2173::AID-HYP61>3.0.CO;2-6
[14] J. Poesen, J. Nachtergaele, G. Verstraeten and C. Valentina, “Gully Erosion and Environmental Change: Importance and Research Needs,” Catena, Vol. 50, No. 2-4. 2003, pp. 91-133. doi:10.1016/S0341-8162(02)00143-1
[15] M. P. Mosley, “Experimental Study of Rill Erosion,” Transactions of the American Society of Agricultural Engineers, Vol. 17, No. 5, 1974, pp. 909-916.
[16] R. S. Parker, “Experimental Study of Drainage Basin Evolution and Its Hydrologic Implications,” Ph.D. Dissertation, Colorado State University, Fort Collins, 1977.
[17] A. Ogunlela, B. N. Wilson, C. T. Rice and G. Couger, “Rill Network Development and Analysis under Simulated Rainfall,” American Society of Agricultural Engineers Paper No. 892112, Quebec City, 1989.
[18] B. N. Wilson and D. E. Storm, “Fractal Analysis of Sur- face Drainage Networks for Small Upland Areas,” Transactions of the American Society of Agricultural Engineers, Vol. 36, No. 5, 1993, pp. 1319-1326.
[19] S. A. Schumm, M. P. Mosley and W. E. Weaver, “Experimental Fluvial Geomorphology,” Wiley Interscience, New York, 1987.
[20] A. Capra, C. Di Stefano, V. Ferro and B. Scicolone, “Similarity between Morphological Characteristics of Rills and Ephemeral Gullies in Sicily, Italy,” Hydrological Processes, Vol. 23, No. 23, 2009, pp. 3334-3341. doi:10.1002/hyp.7437
[21] J. D. Pelletier, “Drainage Basin Evolution in the Rainfall Erosion Facility: Dependence on Initial Conditions,” Geomorphology, Vol. 53, No. 1-2, 2003, pp. 183-196. doi:10.1016/S0169-555X(02)00353-7
[22] R. W. Tossell, W. T. Dickinson, R. P. Rudra and G. J. Wall, “A Portable Rainfall Simulator,” Canadian Agricultural Engineering, Vol. 29, No. 2, 1987, pp. 155-162.
[23] U. K. Mandal, K. V. Rao, P. K. Mishra, K. P. R. Vittal, K. L. Sharma and B. Narsimlu, “Soil Infiltration, Runoff and Sediment Yield from a Shallow Soil with Varied Stone Cover and Intensity of Rain,” European Journal of Soil Science, Vol. 56, No. 4, 2005, pp. 435-443. doi:10.1111/j.1365-2389.2004.00687.x
[24] C. Yao, T. Lei, W. J. Elliot, D. K. McColl, J. Zhao and S. Chen, “Critical Condition for Rill Initiation,” Transactions of the ASABE, Vol. 51, No. 1, 2008, pp. 107-114.
[25] V. A. M. Chaplot and Y. Le Bissonnais, “Runoff Features for Interrill Erosion at Different Rainfall Intensities, Slope Lengths and Gradients in an Agricultural Loessial Hill-slope,” Soil Science Society of America Journal, Vol. 67, No. 3, 2003, pp. 844-851. doi:10.2136/sssaj2003.0844
[26] J. A. Gomez, F. Darboux and M. A. Nearing, “Development and Evolution of Rill Networks under Simulated Rainfall,” Water Resources Research, Vol. 39, No. 6, 2003, pp. 1-14. doi:10.1029/2002WR001437
[27] M. A. Nearing, “Potential Changes in Rainfall Erosivity in the US with Climate Change during the 21st Century,” Journal of Soil and Water Conservation, Vol. 56, No. 3, 2001, pp. 229-232.
[28] B. Hansen, P. Reich, P. S. Lake and T. Cavagnaro, “Minimum Width Requirements for Riparian Zones to Protect Flowing Waters and to Conserve Biodiversity: A Review and Recommendations,” Monash University, Melbourne, 2010. http://www.ccmaknowledgebase.vic.gov.au/resources-/RiparianBuffers_Report_Hansenetal2010.pdf