Analysis of Reflection Properties of High Power Microwave Propagation in Mixture-Atmosphere

References

[1] S. P. Kuo, Y. S. Zhang and P. Kossey, “Propagation of High Power Microwave Pulses in Air Breakdown Envi-ronment,” Physics Fluids, Vol. 133, No. 10, 1991, pp. 2906-2912.

[2]
W. Woo and J. S. DeGroot, “Microwave Absorption and Plasma Heating Due to Microwave Breakdown in the Atmosphere,” Physics Fluids, Vol. 27, No. 2, 1984, pp. 475-487.

[3]
A. W. Ali, “Nanosecond Air Breakdown Parameters for Electron and Microwave Beam Propagation,” Laser and Particle Beams, Vol. 6, No. 2, 1988, pp. 105-117.

[4]
S. P. Kuo and Y. S. Zhang, “A Theoretical Model for Intense Microwave Pulse Propagation in an Air Break-down Environment,” Physics Fluids B, Vol. 3, No. 10, 1991, pp. 2906-2912.

[5]
J. H. Yee, R. A. Alvarez, D. J. Mayhall, D. P. Byrne and J. DeGroot, “Theory of Intense Electromagnetic Pulses Propagation through the Atmosphere,” Physics Fluids, Vol.29, No. 4, 1986, pp. 1238-1244.

[6]
J. H. Yee, D. J. Mayhall, G. E. Sieger and R. A. Alvarez, “Propagation of Intense Microwave Pulses in Air and in a Waveguide,” IEEE Transactions Antennas Propagation, Vol. 39, No. 9, 1991, pp. 1421-1426.

[7]
A. Taflove and S. C. Hagness, “Computational Electro-dynamics the Finite-Difference Time-Domain Method,” 3rd edition, Reading, MA: Artech House, June 2005.

[8]
H. S. Chen, Y. Wang and K. S. Chen, “Transient Analysis of Propagation in Non-uniform One Dimensional Media by Transmission Line Method,” Journal of Microwaves, Vol. 19, No. 3, 2003, pp. 25-29.

[9]
J. Y. Wang and C. Y. Jiang, “Refractive Index of Non- Ionized and Ionized Mixture-Atmosphere,” Chinese Journal of Radio Science, Vol. 20, No. 1, 2005, pp. 34-36.

[10]
T. Tang, C. Liao and D. Yang, “Feasibility Study of Solving High-Power Microwave Propagation in the At-mosphere Using FDTD Method,” Chinese Journal of Ra-dio Science, Vol. 25, No. 1, 2010, pp. 122-126.

[11]
D. T. Hou, D. F. Zhou, Z. X. Niu and Z. Q. Yu, “Effect on Air Refraction Index by Effective Electric-Field Intensity in High Power Microwave Propagation,” High Power Laser And Particle Beams, Vol. 16, No. 9, 2004, pp. 1183 -1185.

[12]
C. Zhang, D. F. Zhou, Y. P. Rao, Y. Chen and D. T. Hou, “FDTD Computation of Air Ionization and Breakdown Caused by High Power Microwave,” High Power Laser and Particle Beams, Vol. 21, No. 5, 2009, pp. 719-723.

[13]
M. L?fgren, D. Anderson and M. Lisak and L. Lundgren, “Breakdown-Induced Distortion of High-Power Micro-wave Pubes in Air,” Physics Fluids B, Vol. 3, No. 12, 1991, pp. 3528-3531.

[14]
M. Thèvenot, J. P. Bérenger, T. Monedière and F. Jecko, “A FDTD Scheme for the Computation of VLF-LF Prop-agation in the Anisotropic Earth-ionosphere Waveguide,” Annals of Telecommunications, Vol. 54, No. 5-6, 1999, pp. 297-310.

[15]
K. R. Umashanker and A. Taflove, “A Novel Method of Analyzing Electromagnetic Scattering of Complex Ob-jects,” IEEE Transactions Electromagnetic Compatibility, Vol. EMC-24, No. 4, 1982, pp. 397-405.