ABB  Vol.4 No.1 A , January 2013
Rho and Ras GTPases in semaphorin-mediated neuronal development
Abstract: Neurons are highly polarized cells with a single long axon and multiple dendrites, all of which are actinrich structures. The precise regulation of neuronal cell morphology is a fundamental aspect of neurobiology. The major role of Rho GTPases, which is conserved in all eukaryotes, is to regulate the actin and microtubule cytoskeleton. Therefore theRhoGTPases are key regulators of neuronal morphology during development besides their canonical functions in actin cytoskeletal regulation, cell migration and cell cycle progression. Semaphorins are a family of secreted or transmembrane proteins, which function through their receptor plexins and/or neuropilins to act as the repulsive or attractive guidance cues for axons and dendrites. It has been demonstrated that the fully activetion of plexins appears to be dependent on the binding of RhoGTPases to theRhobinding domain (RBD) and Semaphorin to the extracellular region. Here, we summarize the functions of the small Rho GTPases in two well-studied vertebrate Semaphorins, Sema3Aand Sema4D; and the potential roles of the small Rho GTPases in some poorly-studied vertebrate Semaphorins Sema5A, Sema6Aand Sema7A. We also summarize the functions of different members of Ras family, R-Ras, M-Ras and Rap, in Semaphorin signalling pathways as well.
Cite this paper: Fan, L. and ?, M. (2013) Rho and Ras GTPases in semaphorin-mediated neuronal development. Advances in Bioscience and Biotechnology, 4, 136-142. doi: 10.4236/abb.2013.41A020.

[1]   Govek, E.E., Newey, S.E. and Van Aelst, L. (2005) The role of the Rho GTPases in neuronal development. Genes and Development, 19, 1-49. doi:10.1101/gad.1256405

[2]   Hall, A. and Lalli, G. (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harbor Perspectives in Biology, 2, a001818. doi:10.1101/cshperspect.a001818

[3]   Luo, L. (2000) Rho GTPases in neuronal morphogenesis. Nature Reviews Neuroscience, 1, 173-180. doi:10.1038/35044547

[4]   Luo, Y., Raible, D. and Raper, J.A. (1993) Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 75, 217-227. doi:10.1016/0092-8674(93)80064-L

[5]   Tran, T.S., Kolodkin, A.L. and Bharadwaj, R. (2007) Se maphorin regulation of cellular morphology. Annual Re view of Cell and Developmental Biology, 23, 263-292. doi:10.1146/annurev.cellbio.22.010605.093554

[6]   Gherardi, E., et al. (2004) The sema domain. Current Op inion in Structural Biology, 14, 669-678. doi:10.1016/

[7]   Koppel, A.M., et al. (1997) A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron, 19, 531 537. doi:10.1016/S0896-6273(00)80369-4

[8]   Neufeld, G. and Kessler, O. (2008) The semaphorins ver satile regulators of tumour progression and tumour an giogenesis. Nature Reviews Cancer, 8, 632-645. doi:10.1038/nrc2404

[9]   Ohta, K., et al. (1995) Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Neuron, 14, 1189-1199. doi:10.1016/0896-6273(95)90266-X

[10]   Oinuma, I., et al. (2004) The Semaphorin 4D receptor ple xin-B1 is a GTPase activating protein for R-Ras. Science, 305, 862-865. doi:10.1126/science.1097545

[11]   Tong, Y., et al. (2007) Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. Journal of Biological Chemistry, 282, 37215-37224. doi:10.1074/jbc.M703800200

[12]   Driessens, M.H., et al. (2001) Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Current Biology, 11, 339-344. doi:10.1016/S0960-9822(01)00092-6

[13]   Vikis, H.G., Li, W. and Guan, K.L. (2002) The plexin B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes and Development, 16, 836 845. doi:10.1101/gad.966402

[14]   Swiercz, J.M., et al. (2002) Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron, 35, 51-63. doi:10.1016/S0896-6273(02)00750-X

[15]   Artigiani, S., et al. (2003) Functional regulation of semaphorin receptors by proprotein convertases. Journal of Bio logical Chemistry, 278, 10094-11101. doi:10.1074/jbc.M210156200

[16]   Takahashi, T. and Strittmatter, S.M. (2001) Plexina1 auto inhibition by the plexin sema domain. Neuron, 29, 429 439. doi:10.1016/S0896-6273(01)00216-1

[17]   Puschel, A.W. (2002) The function of neuropilin/plexin complexes. Advances in Experimental Medicine and Biology, 515, 71-80. doi:10.1007/978-1-4615-0119-0_6

[18]   Chen, H., et al. (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron, 19, 547-559. doi:10.1016/S0896-6273(00)80371-2

[19]   He, Z. and Tessier-Lavigne, M. (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell, 90, 739-751. doi:10.1016/S0092-8674(00)80534-6

[20]   Jan, Y.N. and Jan, L.Y. (2003) The control of dendrite development. Neuron, 40, 229-242. doi:10.1016/S0896-6273(03)00631-7

[21]   Kubo, T., et al. (2002) A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling. Journal of Neuroscience, 22, 8504-8513.

[22]   Toyofuku, T., et al. (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nature Neuroscience, 8, 1712-1719. doi:10.1038/nn1596

[23]   Oinuma, I., Katoh, H. and Negishi, M. (2004) Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. Journal of Neuroscience, 24, 11473-11480. doi:10.1523/JNEUROSCI.3257-04.2004

[24]   Zanata, S.M., et al. (2002) Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. Journal of Neuroscience, 22, 471-477.

[25]   Artigiani, S., et al. (2004) Plexin-B3 is a functional receptor for semaphorin 5A. EMBO Reports, 5, 710-714. doi:10.1038/sj.embor.7400189

[26]   Li, X. and Lee, A.Y. (2010) Semaphorin 5A and plexin B3 inhibit human glioma cell motility through RhoGD Ialpha-mediated inactivation of Rac1 GTPase. Journal of Biological Chemistry, 285, 32436-32445. doi:10.1074/jbc.M110.120451

[27]   Xu, X.M., et al. (2000) The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. Journal of Neuroscience, 20, 2638-2648.

[28]   Zhuang, B., Su, Y.S. and Sockanathan, S. (2009) FARP1 promotes the dendritic growth of spinal motor neuron sub types through transmembrane Semaphorin6A and Plex inA4 signaling. Neuron, 61, 359-372. doi:10.1016/j.neuron.2008.12.022

[29]   Polleux, F., Morrow, T. and Ghosh, A. (2000) Sema phorin 3A is a chemoattractant for cortical apical dendrites. Nature, 404, 567-573. doi:10.1038/35007001

[30]   Koyano, Y., et al. (1997) Molecular cloning and characterization of CDEP, a novel human protein containing the ezrin-like domain of the band 4.1 superfamily and the Dbl homology domain of Rho guanine nucleotide exchange factors. Biochemical and Biophysical Research Communications, 241, 369-375. doi:10.1006/bbrc.1997.7826

[31]   Koyano, Y., et al. (2001) Chondrocyte-derived ezrin-like domain containing protein (CDEP), a rho guanine nucleo tide exchange factor, is inducible in chondrocytes by pa rathyroid hormone and cyclic AMP and has transforming activity in NIH3T3 cells. Osteoarthritis Cartilage, 9, S64 S68.

[32]   Pasterkamp, R.J., et al. (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature, 424, 398-405. doi:10.1038/nature01790

[33]   Liu, H., et al. (2010) Structural basis of semaphorin plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell, 142, 749-761. doi:10.1016/j.cell.2010.07.040

[34]   Walzer, T., et al. (2005) Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. Journal of Immunology, 174, 51-59.

[35]   Scott, G.A., et al. (2009) Plexin C1, a receptor for semaphorin 7a, inactivates cofilin and is a potential tumor suppressor for melanoma progression. Journal of Investigative Dermatology, 129, 954-963. doi:10.1038/jid.2008.329

[36]   Kinbara, K., et al. (2003) Ras GTPases: Integrins’ friends or foes? Nature Reviews. Molecular Cell Biology, 4, 767 776. doi:10.1038/nrm1229

[37]   Matsumoto, K., Asano, T. and Endo, T. (1997) Novel small GTPase M-Ras participates in reorganization of actin cytoskeleton. Oncogene, 15, 2409-2417. doi:10.1038/sj.onc.1201416

[38]   Saito, Y., et al. (2009) Plexin-B1 is a GTPase activating protein for M-Ras, remodelling dendrite morphology. EM BO Reports, 10, 614-621. doi:10.1038/embor.2009.63

[39]   Oinuma, I., Katoh, H. and Negishi, M. (2007) R-Ras controls axon specification upstream of glycogen synthase kinase-3beta through integrin-linked kinase. Journal of Biological Chemistry, 282, 303-318. doi:10.1074/jbc.M607979200

[40]   Bos, J.L. and Pannekoek, W.J. (2012) Semaphorin signaling meets rap. Science Signaling, 5, pe6. doi:10.1126/scisignal.2002913

[41]   Wang, Y., et al. (2012) Plexins are GTPase-activating proteins for rap and are activated by induced dimerization. Science Signaling, 5, ra6. doi:10.1126/scisignal.2002636

[42]   Gross, I., et al. (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras ac tivation. Journal of Biological Chemistry, 276, 46460 46468. doi:10.1074/jbc.M108234200

[43]   Chen, X.Q., et al. (1999) The myotonic dystrophy kinase related Cdc42-binding kinase is involved in the regulation of neurite outgrowth in PC12 cells. Journal of Biological Chemistry, 274, 19901-19905. doi:10.1074/jbc.274.28.19901

[44]   Harada, A., Katoh, H. and Negishi, M. (2005) Direct interaction of Rnd1 with FRS2 beta regulates Rnd1-induced down-regulation of RhoA activity and is involved in fibroblast growth factor-induced neurite outgrowth in PC 12 cells. Journal of Biological Chemistry, 280, 18418 18424. doi:10.1074/jbc.M411356200

[45]   Aoki, J., et al. (2000) Rnd1, a novel rho family GTPase, induces the formation of neuritic processes in PC12 cells. Biochemical and Biophysical Research Communications, 278, 604-608. doi:10.1006/bbrc.2000.3842

[46]   Fujita, H., et al. (2002) Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching. Journal of Bio logical Chemistry, 277, 45428-45434. doi:10.1074/jbc.M208090200

[47]   Kakimoto, T., Katoh, H. and Negishi, M. (2004) Identification of splicing variants of Rapostlin, a novel RND2 effector that interacts with neural Wiskott-Aldrich syndrome protein and induces neurite branching. Journal of Biological Chemistry, 279, 14104-14110. doi:10.1074/jbc.M312763200

[48]   Negishi, M. and Katoh, H. (2005) Rho family GTPases and dendrite plasticity. Neuroscientist, 11, 187-191. doi:10.1177/1073858404268768

[49]   Talens-Visconti, R., et al. (2010) RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling. Journal of Neurochemistry, 112, 1074-1087. doi:10.1111/j.1471-4159.2009.06526.x

[50]   Katoh, H., et al. (2000) Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells. Molecular and Cellular Biology, 20, 7378-7387. doi:10.1128/MCB.20.19.7378-7387.2000

[51]   Fan, L. and Mellor, H. (2012) The small Rho GTPase Rif and actin cytoskeletal remodelling. Biochemical Society Transactions, 40, 268-272. doi:10.1042/BST20110625

[52]   Fan, L., et al. (2010) The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. Journal of Cell Science, 123, 1247-1252. doi:10.1242/jcs.061754

[53]   Pellegrin, S. and Mellor, H. (2005) The Rho family GT Pase Rif induces filopodia through mDia2. Current Biology, 15, 129-133. doi:10.1016/j.cub.2005.01.011

[54]   Hotulainen, P., et al. (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. Journal of Cell Biology, 185, 323-339. doi:10.1083/jcb.200809046

[55]   Capparuccia, L. and Tamagnone, L. (2009) Semaphorin signaling in cancer cells and in cells of the tumor micro environment—Two sides of a coin. Journal of Cell Sci ence, 122, 1723-1736. doi:10.1242/jcs.030197

[56]   Rohm, B., et al. (2000) The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Letters, 486, 68-72. doi:10.1016/S0014-5793(00)02240-7