Accuracy Improvement of PLIC-VOF Volume-Tracking Method Using the Equation of Surface Normal Vector

Mingyu Sun^{*}

Show more

References

[1] C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, Vol. 39, No. 1, 1981, pp. 201-225. doi:10.1016/0021-9991(81)90145-5

[2] W. J. Rider and D. B. Kothe, “Reconstructing Volume Tracking,” Journal of Computational Physics, Vol. 141, No. 2, 1998, pp. 112-152. doi:10.1006/jcph.1998.5906

[3] R. Scardovelli and S. Zaleski, “Direct Numerical Simulation of Free-Surface and Interfacial Flow,” Annual Review of Fluid Mechanics, Vol. 31, 1999, pp. 567-603.
doi:10.1146/annurev.fluid.31.1.567

[4] W. F. Noh and P. Woodward, “SLIC (Simple Line Interface Calculation),” In: A. I. van der Vooren and P. J. Zandbergen, Eds., Lecture Notes in Physics, Springer, New York, 1976, p. 330.

[5] M. Rudman, “Volume-Tracking Methods for Interfacial Flow Calculations,” International Journal for Numerical Methods in Fluids, Vol. 24, No. 7, 1997, pp. 671-691.
doi:10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9

[6] D. L. Youngs, “An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code,” Technical Report 44/92/ 35, AWRE, 1984.

[7] E. G. Puckett, “A Volume of Fluid Interface Tracking Algorithm with Applications to Computing Shock Wave Rarefraction,” Proceedings of the 4th International Symposium on Computational Fluid Dynamics, 1991.

[8] R. Scardovelli and S. Zaleski, “Interface Reconstruction with Least-Square Fit and Split Eulerian-Lagrangian Advection,” International Journal for Numerical Methods in Fluids, Vol. 41, No. 3, 2003, pp. 251-274.
doi:10.1002/fld.431

[9] J. López, J. Hernández, P. Gómez and F. Faura, “A Volume of Fluid Method Based on Multidimensional Advection and Spline Interface Reconstruction,” Journal of Computational Physics, Vol. 195, No. 2, 2004, pp. 718- 742. doi:10.1016/j.jcp.2003.10.030

[10] J. E. Pilliod Jr. and E. G. Puckett, “Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces,” Journal of Computational Physics, Vol. 199, No. 2, 2004, pp. 465-502. doi:10.1016/j.jcp.2003.12.023

[11] M. M. Francois and B. K. Swartz, “Interface Curvature via Volume Fractions, Heights, and Mean Values on Nonuniform Rectangular Grids,” Journal of Computational Physics, Vol. 229, No. 3, 2010, pp. 527-540.
doi:10.1016/j.jcp.2009.10.022

[12] M. Sussman and E. G. Puckett, “A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows,” Journal of Computational Physics, Vol. 162, No. 2, 2000, pp. 301- 337. doi:10.1006/jcph.2000.6537

[13] M. Raessi, J. Mostaghimi and M. Bussmann, “Advecting Normal Vectors: A New Method for Calculating Interface Normals and Curvatures When Modeling Two-Phase Flows,” Journal of Computational Physics, Vol. 226, No. 1, 2007, pp. 774-794. doi:10.1016/j.jcp.2007.04.023

[14] D. J. E. Harvie and D. F. Fletcher, “A New Volume of Fluid Advection Algorithm: The Defined Donating Region Scheme,” International Journal for Numerical Me- thods in Fluids, Vol. 35, No. 2, 2001, pp. 151-172.
doi:10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4

[15] M. Sun, “Volume Tracking of Subgrid Particles,” International Journal for Numerical Methods in Fluids, Vol. 66, No. 12, 2011, pp. 1530-1554. doi:10.1002/fld.2331

[16] D. Igra and M. Sun, “Shock-Water Column Interaction, from Initial Impact to Fragmentation Onset,” AIAA Journal, Vol. 48, No. 12, 2010, pp. 2763-2771.
doi:10.2514/1.44901

[17] D. J. E. Harvie and D. F. Fletcher, “A New Volume of Fluid Advection Algorithm: The Stream Scheme,” Journal of Computational Physics, Vol. 162, No. 1, 2000, pp. 1-32. doi:10.1006/jcph.2000.6510