[1] R. E. Kalman, P. L. Falb and M. A. Arbib, “Topics in Mathematical System Theory,” McGraw-Hill, New York, 1969.
[2] B. M. Chen, Z. Lin and Y. Shamesh, “Linear Systems Theory. A Structural Decomposition Approach,” Birkhauser, Boston, 2004. doi:10.1007/978-1-4612-2046-6
[3] E. B. Lee and L. Markus, “Foundations of Optimal Control Theory,” Wiley, New York, London, Sydney, 1971.
[4] Z. Varga, “On Controllability of Fisher’s Model of Selection,” In: C. M. Dafermos, G. Ladas and G. Papanicolau, Eds, Differential Equations, Marcel Dekker, New York, 1989, pp. 717-723.
[5] Z. Varga, “On Observability of Fisher’s Model of Selection,” Pure Mathematics and Applications, Series B, Vol. 3, No. 1, 1992, pp. 15-25.
[6] Gy. Farkas, “Local Controllability of Reactions,” Journal of Mathematical Chemistry, Vol. 24, No. 1, 1998, pp. 1-14. doi:10.1023/A:1019150014783
[7] Gy. Farkas, “On Local Observability of Chemical Systems,” Journal of Mathematical Chemistry, Vol. 24, No. 1-3, 1998, pp. 15-22. doi:10.1023/A:1019158316600
[8] A. Scarelli and Z. Varga, “Controllability of Selection-Mutation Systems,” BioSystems, Vol. 65, No. 2-3, 2002, pp. 113-121. doi:10.1016/S0303-2647(02)00012-6
[9] I. López, “Observabilidad y Controlabilidad en Modelos de Evolución,” Ph.D. Dissertation, Universidad de Almería, Espana, 2003.
[10] I. López, M. Gámez, R. Carreno and Z. Varga, “Recovering Genetic Processes from Phenotypic Observation,” In: V. Capasso, Ed., Mathematical Modelling & Computing in Biology and Medicine, MIRIAM, Milan, 2003, pp. 356-361.
[11] I. López, M. Gámez, R. Carreno and Z. Varga, “Optimization of Mean Fitness of a Population via Artificial Selection,” In: R. Bars, Ed., Control Applications of Optimisation, Elsevier, Amsterdam, 2003, pp. 147-150.
[12] I. López, M. Gámez and R. Carreno, “Observability in Dynamic Evolutionary Models,” BioSystems, Vol. 73, No. 2, 2004, pp. 99-109. doi:10.1016/j.biosystems.2003.10.003
[13] I. López, M. Gámez and Z. Varga, “Equilibrium, Observability and Controllability in Selection-Mutation Models,” BioSystems, Vol. 81, No. 1, 2005, pp. 65-75. doi:10.1016/j.biosystems.2005.02.006
[14] I. López, M. Gámez and Z. Varga, “Observer Design for Phenotypic Observation of Genetic Processes,” Nonlinear Analysis: Real World Applications, Vol. 9, No. 2, 2008, pp. 290-302. doi:10.1016/j.nonrwa.2006.10.004
[15] M. Gámez, R. Carreno, A. Kósa and Z. Varga, “Observability in Strategic Models of Selection,” BioSystems, Vol. 71, No. 3, 2003, pp. 249-255. doi:10.1016/S0303-2647(03)00072-8
[16] Z. Varga, A. Scarelli and A. Shamandy, “State Monitoring of a Population System in Changing Environment,” Community Ecology, Vol. 4, No. 1, 2003, pp. 73-78. doi:10.1556/ComEc.4.2003.1.11
[17] I. López, M. Gámez, J. Garay and Z. Varga, “Monitoring in a Lotka-Volterra Model,” BioSystems, Vol. 87, No. 1, 2007, pp. 68-74. doi:10.1016/j.biosystems.2006.03.005
[18] M. Gámez, I. López and Z. Varga, “Iterative Scheme for the Observation of a Competitive Lotka-Volterra System,” Applied Mathematics and Computation, Vol. 201, No. 1-2, 2008, pp. 811-818. doi:10.1016/j.amc.2007.11.049
[19] M. Gámez, I. López and S. Molnár, “Monitoring Environmental Change in an Ecosystem,” BioSystems, Vol. 93, No. 3, 2008, pp. 211-217. doi:10.1016/j.biosystems.2008.04.012
[20] M. Gámez, I. López and A. Shamandy, “Open-and Closed-Loop Equilibrium Control of Trophic Chains,” Ecological Modelling, Vol. 221, No. 16, 2010, pp. 1839-1846. doi:10.1016/j.ecolmodel.2010.04.011
[21] J. R. Banga, E. Balsa-Canto, C. G. Moles and A. A. Alonso, “Dynamic Optimization of Bioprocesses: Efficient and Robust Numerical Strategies,” Journal of Biotechnology, Vol. 117, No. 4, 2005, pp. 407-419. doi:10.1016/j.jbiotec.2005.02.013
[22] T. Hirmajer, E. Balsa-Canto and J. R. Banga, “DOTcvpSB, a Software Toolbox for Dynamic Optimization in Systems Biology,” BMC Bioinformatics, Vol. 10, 2009, p. 199. doi:10.1186/1471-2105-10-199
[23] F. Szigeti, C. Vera and Z. Varga, “Nonlinear System Inversion Applied to Ecological Monitoring,” Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona, 21-26 July 2002, pp. 1-5. http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2002/data/content/01758/1758.pdf
[24] M. Gámez, I. López, J. Garay and Z. Varga, “Observation and Control in a Model of a Cell Population Affected by Radiation,” BioSystems, Vol. 96, No. 2, 2009, pp. 172-177. doi:10.1016/j.biosystems.2009.01.004
[25] M. Rafikov, J. M. Balthazar and H. F. von Bremen, “Mathematical Modelling and Control of Population Systems: Applications in Biological Pest Control,” Applied Mathematics and Computation, Vol. 200, No. 2, 2008, pp. 557-573. doi:10.1016/j.amc.2007.11.036
[26] M. Rafikov and E. H. Limeira, “Mathematical Modelling of the Biological Pest Control of the Sugarcane Borer,” International Journal of Computer Mathematics, Vol. 89, No. 3, 2012, pp. 390-401. doi:10.1080/00207160.2011.587873
[27] M. Rafikov, A. Del Sole Lordelo and E. Rafikova, “Impulsive Biological Pest Control Strategies of the Sugarcane,” Mathematical Problems in Engineering, Vol. 2012, 2012, pp. 1-14. doi:10.1155/2012/726783
[28] Z. Varga, “Applications of Mathematical Systems Theory in Population Biology,” Periodica Mathematica Hungarica, Vol. 56, No. 1, 2008, pp. 157-168. doi:10.1007/s10998-008-5157-0
[29] M. Gámez, “Observation and Control in Density and Frequency-dependent Population Models,” In: W. J. Zhang, Ed., Ecological Modeling, Nova Science Publishers, New York, 2011, pp. 285-306.
[30] S. Molnár, “Model Runs for the Definition of the Most Advantageous Integrated Energetical Verticum in the National Economy,” Publications of Central Mining Development Institute, Vol. 30, 1887, pp. 121-127.
[31] S. Molnár, “Realization of Verticum-Type Systems,” Mathematical Analysis and Systems Theory, Vol. 5, 1988, pp. 11-30.
[32] S. Molnár, “Optimization of Realization-Independent Cost Functions,” Mathematical Analysis and Systems Theory, Vol. 5, 1988, pp. 1-10.
[33] S. Molnár, “Observability and Controllability of Decomposed Systems I,” Mathematical Analysis and Systems Theory, Vol. 5, 1988, pp. 57-66.
[34] S. Molnár, “Observability and Controllability of Decomposed Systems II,” Mathematical Analysis and Systems Theory, Vol. 5, 1988, pp. 67-72.
[35] S. Molnár, “Observability and Controllability of Decomposed Systems III,” Mathematical Analysis and Systems Theory, Vol. 5, 1988, pp. 73-80.
[36] S. Molnár, “A Special Decomposition of Linear Systems,” Belgian Journal Operations Reseach, Statistics and Computation Science, Vol. 29, No. 4, 1989, pp. 1-19.
[37] S. Molnár, “Stabilization of Verticum-Type Systems,” Pure Mathematics and Applications, Vol. 4, No. 4, 1993, pp. 493-499.
[38] S. Molnár and F. Szigeti, “On Verticum-Type Linear Systems with Time-Dependent Linkage,” Applied Mathematics and Computation, Vol. 60, No. 1, 1994, 89-102. doi:10.1016/0096-3003(94)90208-9
[39] I. López, M. Gámez and S. Molnár, “Observability and Observers in a Food Web,” Applied Mathematics Letters, Vol. 20, No. 8, 2007, pp. 951-957. doi:10.1016/j.aml.2006.09.007
[40] M. Gámez, I. López, I. Szabó and Z. Varga, “Verticum-Type Systems Applied to Ecological Monitoring,” Applied Mathematics and Computation, Vol. 215, No. 9, 2010, pp. 3230-3238. doi:10.1016/j.amc.2009.10.010
[41] S. Molnár, M. Gámez and I. López, “Observation of Nonlinear Verticum-Type Systems Applied to Ecological Monitoring,” International Journal of Biomathematics, Vol. 5, No. 6, 2012, pp. 1-15. doi:10.1142/S1793524512500519
[42] M. Gámez, I. López, Z. Varga and J. Garay, “Stock Estimation, Environmental Monitoring and Equilibrium Control of a Fish Population with Reserve Area,” Reviews in Fish Biology and Fisheries, Vol. 22, No. 3, 2012, pp. 751-766. doi:10.1007/s11160-012-9253-y
[43] B. Dubey, P. Chandra and P. Sinha, “A Model for Fishery Resource with Reserve Area,” Nonlinear Analysis. Real World Applications, Vol. 4, No. 4, 2003, pp. 625-637. doi:10.1016/S1468-1218(02)00082-2
[44] V. Sundarapandian, “Local Observer Design for Nonlinear Systems,” Mathematical and Computer Modelling, Vol. 35, No. 1, 2002, pp. 25-36. doi:10.1016/S0895-7177(01)00145-5
[45] A. Guiro, A. Iggidr, D. Ngom and H. Touré, “On the Stock Estimation for Some Fishery Systems,” Review in Fish Biology and Fisheries, Vol. 19, No. 3, 2009, pp. 313-327. doi:10.1007/s11160-009-9104-7
[46] A. Shamandy, “Monitoring of Trophic Chains,” Biosystems, Vol. 81, No. 1, 2005, pp. 43-48. doi:10.1016/j.biosystems.2005.02.005
[47] P. J. Morin and P. Morin, “Community Ecology,” Wiley-Blackwell, Hoboken, 1991.
[48] A. Ouahbi, A. Iggidr and M. El Bagdouri, “Stabilization of an Exploited Fish Population,” Systems Analysis Modelling Simulation, Vol. 43, No. 4, 2003, pp. 513-524. doi:10.1080/02329290290028543
[49] R. Cressman, J. Garay and J. Hofbauer, “Evolutionary Stability Concepts for N-species Frequency-Dependent Interactions,” Journal of Theoretical Biology, Vol. 211, No. 1, 2001, pp. 1-10. doi:10.1006/jtbi.2001.2321
[50] J. Garay, “Many Species Partial Adaptive Dynamics,” BioSystems, Vol. 65, No. 1, 2002, pp. 19-23. doi:10.1016/S0303-2647(01)00196-4
[51] R. Cressman and J. Garay, “Evolutionary Stability in Lotka-Volterra Systems,” Journal of Theoretical Biology, Vol. 222, No. 2, 2003, pp. 233-245. doi:10.1016/S0022-5193(03)00032-8
[52] R. Cressman and J. Garay, “Stablility N-Species Coevolutionary Systems,” Theoretical Population Biology, Vol. 64, No. 4, 2003, pp. 519-533. doi:10.1016/S0040-5809(03)00101-1
[53] R. Cressman and J. Garay, “A Game-Theoretical Model for Punctuated Equilibrium: Species Invasion and Stasis through Coevolution,” BioSystem, Vol. 84, No. 1, 2006, pp. 1-14. doi:10.1016/j.biosystems.2005.09.006
[54] R. Cressman, V. Krivan and J. Garay, “Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple-Species Environments,” The American Naturalist, Vol. 164, No. 4, 2004, pp. 473-489. doi:10.1086/423827
[55] R. Cressman and J. Garay, “A Predator-Prey Refuge System: Evolutionary Stability in Ecological Systems,” Theoretical Population Biology, Vol. 76, No. 4, 2009, pp. 248-257. doi:10.1016/j.tpb.2009.08.005
[56] R. Cressman and J. Garay, “The Effects of Opportunistic and Intentional Predators on the Herding Behavior of Prey,” Ecology, Vol. 92, No. 2, 2011, pp. 432-440. doi:10.1890/10-0199.1
[57] R. Kicsiny and Z. Varga, “Real-Time State Observer Design for Solar Thermal Heating Systems,” Applied Mathematics and Computation, Vol. 218, No. 23, 2012, pp. 11558-11569. doi:10.1016/j.amc.2012.05.040
[58] R. Kicsiny and Z. Varga, “Real-Time Nonlinear Global State Observer Design for Solar Heating Systems,” Nonlinear Analysis: Real World Applications, Vol. 14, 2013, pp. 1247-1264. doi:10.1016/j.nonrwa.2012.09.017