ACS  Vol.3 No.1 , January 2013
Contrasting Vertical Structure of Recent Arctic Warming in Different Data Sets
ABSTRACT

Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.


Cite this paper
I. Esau, V. Alexeev, I. Repina and S. Sorokina, "Contrasting Vertical Structure of Recent Arctic Warming in Different Data Sets," Atmospheric and Climate Sciences, Vol. 3 No. 1, 2013, pp. 1-5. doi: 10.4236/acs.2013.31001.
References
[1]   J. Hansen, R. Ruedy, Mki. Sato and K. Lo, “Global Surface Temperature Change,” Reviews of Geophysics, Vol. 48, No. 4, 2010. doi:10.1029/2010RG000345

[2]   M. C. Serreze and R. G. Barry, “Processes and Impacts of Arctic Amplification: A Research Synthesis,” Global Planetary Change, Vol. 77, No. 1-2, 2011, pp. 85-96. doi:10.1016/j.gloplacha.2011.03.004

[3]   S. Outten and I. Esau, “A Link between Arctic Sea Ice and Recent Cooling Trends over Eurasia,” Climatic Change, Vol. 110, No. 3-4, 2011, pp. 1069-1075. doi:10.1007/s10584-011-0334-z

[4]   M. Tjernstroem, “The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001),” Boundary-Layer Meteorology, Vol. 117, No. 1, 2005, pp. 5-36. doi:10.1007/s10546-004-5641-8

[5]   M. C. Serreze, A. P. Barrett, J. C. Stroeve, D. N. Kindig and M. M. Holland, “The Emergence of Surface-Based Arctic Amplification,” The Cryosphere, Vol. 3, 2009, pp. 11-19. doi:10.5194/tc-3-11-2009

[6]   R. G. Graversen, T. Mauritsen, M. Tjernstrom, E. Kallén and G. Svensson, “Vertical Structure of Recent Arctic Warming,” Nature, Vol. 451, No. 7174, 2008, pp. 53-56. doi:10.1038/nature06502

[7]   I. Esau and S. Zilitinkevich, “On the Role of the Planetary Boundary Layer Depth in the Climate System,” Advances in Science and Research, Vol. 4, 2010, pp. 63-69. doi:10.5194/asr-4-63-2010

[8]   I. Esau, R. Davy and S. Outten, “Complementary Explanation of Temperature Response in the Lower Atmosphere,” Environmental Research Letters, Vol. 7, No. 4, 2012, p. 044026.

[9]   V. A Alexeev, P. L. Langen and J. R. Bates, “Polar Amplification of Surface Warming on an Aquaplanet in Ghost Forcing Experiments without Sea Ice Feedbacks,” Climate Dynamics, Vol. 24, No. 7-8, 2005, pp. 655-666. doi:10.1007/s00382-005-0018-3

[10]   J. E. Overland, R. G. Graversen and M. Honda, “Hot Arctic-Cold Continents: Global Impacts of Arctic Change,” EOS Transactions, Vol. 91, No. 41, 2011, p. 373. doi:10.1029/2010EO410007

[11]   J. Ukita, M. Honda, H. Nakamura, Y. Tachibana, D. J. Cavarieli, C. L. Parkinson, H. Koide and K. Yamamoto, “Northern Hemisphere Sea Ice Variability: Lag and Propagation,” Tellus, Vol. 59, No. 2, 2007, pp. 261-272.

[12]   S. Sorokina and I. Esau, “Meridional Energy Flux in the Arctic Obtained From Data of the Igra Radio Sounding Archive,” Izvestiya, Atmospheric and Oceanic Physics, Vol. 47, No. 5, 2011, pp. 572-583. doi:10.1134/S0001433811050112

[13]   C. M. Bitz and Q. Fu, “Arctic Warming Aloft Is Data Set Dependent,” Nature, Vol. 455, No. 7210, 2008, pp. E3-E4.

[14]   J. A. Screen and I. Simmonds, “The Central Role of Diminishing Sea Ice in Recent Arctic Temperature Amplification,” Nature, Vol. 464, No. 7293, 2010, pp. 1334-1337. doi:10.1038/nature09051

[15]   V. A. Alexeev, I. Esau, I. Polyakov, S. J. Byam and S. Sorokina, “Vertical Structure of Recent Arctic Warming from Observed Data and Reanalysis Products,” Climatic Change, Vol. 111, No. 2, 2012, pp. 215-239. doi:10.1007/s10584-011-0192-8

[16]   I. Rigor, R. Colony and S. Martin, “Variations in Surface Air Temperature Observations in the Arctic, 1979-1997,” Journal of Climate, Vol. 13, No. 5, 2000, pp. 896-914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2

[17]   P. D. Jones and A. Moberg, “Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001,” Journal of Climate, Vol. 16, No. 2, pp. 206-223.

[18]   S. Kuzmina, O. M. Johannessen, B. Bengtsson, O. G. Aniskina and L. P. Bobylev, “High Northern Latitude Surface Air Temperature: Comparison of Existing Data and Creation of a New Gridded Dataset 1900-2000,” Tellus A, Vol. 60, No. 1, 2008, pp. 113-130.

[19]   P. W. Thorne, D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman and P. Brohan, “Revisiting Radiosonde Upper Air Temperatures from 1958 to 2002,” Journal of Geophysical Research, Vol. 110, No. D18, 2004. doi:10.1029/2004JD005753

[20]   S. M. Uppala, et al., “The ERA-40 Re-Analysis,” Quarterly Journal of the Royal Meteorological Society, Vol. 131, No. 612, 2005, pp. 2961-3012. doi:10.1256/qj.04.176

[21]   A. J. Simmons, et al., “Comparison of Trends and Variability in CRU, ERA-40 and NCEP/NCAR Analyses of Monthly-Mean Surface Air Temperature,” European Centre for Medium-Range Weather Forecasts, Reading, 2004.

[22]   D. J. Karoly and Q. Wu, “Detection of Regional Surface Temperature Trends,” Journal of Climate, Vol. 18, No. 21, 2005, pp. 4337-4343. doi:10.1175/JCLI3565.1

 
 
Top