The Continuous Analogy of Newton’s Method for Solving a System of Linear Algebraic Equations

Show more

References

[1] R. Kress, “Numerical Analysis,” Springer-Verlag, Berlin, 1998. doi:10.1007/978-1-4612-0599-9

[2] T. Zhanlav, “On the Iteration Method with Minimal Defect for Solving a System of Linear Algebraic Equations,” Scientific Transaction, No. 8, 2001, pp. 59-64.

[3] T. Zhanlav and I. V. Puzynin, “The Convergence of Iterations Based on a Continuous Analogy Newton’s Method,” Journal of Computational Mathematics and Mathematical Physics, Vol. 32, No. 6, 1992, pp. 729-737.

[4] R. S. Dembo, S. C. Eisenstat and T. Steihaug, “Inexact Newton Methods,” SIAM Journal on Numerical Analysis, Vol. 19, No. 2, 1982, pp. 400-408. doi:10.1137/0719025

[5] H. B. An, Z. Y. Mo and X. P. Liu, “A Choice of Forcing Terms in Inexact Newton Method,” Journal of Computational and Applied Mathematics, Vol. 200, No. 1, 2007, pp. 47-60. doi:10.1016/j.cam.2005.12.030

[6] T. Zhanlav, O. Chuluunbaatar and G. Ankhbayar, “Relationship between the Inexact Newton Method and the Continuous Analogy of Newton Method,” Revue D’Analyse Numerique et de Theorie de L’Approximation, Vol. 40, No. 2, 2011, pp. 182-189.

[7] T. Zhanlav and O. Chuluunbaatar, “The Local and Global Convergence of the Continuous Analogy of Newton’s Method,” Bulletin of PFUR, Series Mathematics, Information Sciences, Physics, No. 1, 2012, pp. 34-43.

[8] J. W. Demmel, “Applied Numerical Linear Algebra,” SIAM, Philadelphia, 1997, pp. 265-360.
doi:10.1137/1.9781611971446

[9] W. Hackbusch, “Elliptic Differential Equations: Theory and Numerical Treatment,” Springer Series in Computational Mathematics, Vol. 18, Springer, Berlin, 1992.