New Bounds for Zagreb Eccentricity Indices

Show more

References

[1] P. Dankelmann, W. Goddard and C. S. Swart, “The Average Eccentricity of a Graph and Its Subgraphs,” Utilitas Final Copy, Vol. 65, 2004, pp. 41-51.

[2] I. Gutman and N. Trinajsti?, “Graph Theory and Molecular Orbitals, Total φ-Electron Energy of Alternant Hydrocarbons,” Chemical Physics Letters, Vol. 17, 1972, pp. 535-538. doi:10.1016/0009-2614(72)85099-1

[3] D. Vuki?evi? and A. Graovac, “Note on the Comparison of the First and Second Normalized Zagreb Eccentricity Indices,” Acta Chimica Slovenica, Vol. 57, 2010, pp. 524-528.

[4] M. Ghorbani and M. A. Hosseinzadeh, “A New Version of Zagreb Indices,” Filomat, Vol. 26, No. 1, 2012, pp. 93-100. doi:10.2298/FIL1201093G

[5] R. Xing, B. Zhou and N. Trinajsti?, “On Zagreb Eccentricity Indices,” Croatica Chemica Acta, Vol. 84, No. 4, 2011, pp.493-497. doi:10.5562/cca1801

[6] K. C. Das, D. W. Lee and A. Gravovac, “Some Properties of Zagreb Eccentricity Indices,” Ars Mathematica Contemporanea, Vol. 6, No. 1, 2013, pp. 117-125.

[7] V. Sharma, R. Goswami and A. K. Madan, “Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies,” Journal of Chemical Information Computer Sciences, 1997, Vol. 37, No. 2, pp. 273-282.
doi:10.1021/ci960049h

[8] B. Zhou and Z. Du, “On Eccentric Connectivity Index,” MATCH: Communications in Mathematical and in Computer Chemistry, Vol. 63, No. 1, 2010, pp. 181-198.

[9] N. De, “Eccentric Connectivity Index of Thorn Graph,” Applied Mathematics, Vol. 3, No. 8, 2012, pp. 931-934.
doi:10.4236/am.2012.38139

[10] A. Ili? and I. Gutman, “Eccentric Connectivity Index of Chemical Trees,” MATCH: Communications in Mathematical and in Computer Chemistry, Vol. 65, 2011, pp. 731-744.

[11] K.C. Das, “Maximizing the Sum of the Squares of Degrees of a Graph,” Discrete Mathematics, Vol. 285, No. 1-3, 2004, pp. 57-66. doi:10.1016/j.disc.2004.04.007

[12] A. Ili?, M. Ili? and B. Liu, “On the Upper Bounds for the First Zagreb Index,” Kragujevac Journal of Mathematics, Vol. 35, No. 1, 2011, pp. 173-182.

[13] N. De, “Some Bounds of Reformulated Zagreb Indices,” Applied Mathematical Sciences, Vol. 6, No. 101-104, 2012, pp. 5005-5012.

[14] K. Ch. Das, I. Gutman and B. Zhou, “New Upper Bounds on Zagreb Indices,” J. Math. Chem., Vol. 46, No. 2, 2009, pp. 514-521. doi:10.1007/s10910-008-9475-3

[15] N. De, “Bounds for the connective eccentric index,” International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 44, 2012, pp. 2161-2166.