JBNB  Vol.4 No.1 , January 2013
Preparation of Silk Fibroin Microspheres and Its Cytocompatibility
ABSTRACT
The goal of this proof-of-concept study was the fabrication of porous silk fibroin (SF) microspheres which could be used as cell culture carriers under very mild processing conditions. The SF solution was differentiated into droplets which were induced by a syringe needle in the high-voltage electrostatic field. They were collected and frozen in liquid nitrogen and water in droplets formed ice crystals which sublimated during lyophilization and a great quantity of micropores shaped in SF microspheres. Finally, the microspheres were treated in ethanol so as to transfer the molecular conformation into β-sheet and then they were insoluble in water. SF particles were spherical in shape with diameters in the range of 208.4 μm to 727.3 μm, while the pore size on the surface altered from 0.3 μm to 10.7 μm. In vitro, the performances of SF microspheres were assessed by culturing L-929 fibroblasts cells. Cells were observed to be tightly adhered and fully extended; also a large number of connections were established between cells. After 5-day culture, it could be observed under a confocal laser scanning microscope that the porous microenvironment offered by SF particles accelerated proliferation of cells significantly. Furthermore, porous SF particles with smaller diameters (200 - 300 μm) might promote cell growth better. These new porous SF microspheres hold a great potential for cell culture carriers and issue engineering scaffolds.

Cite this paper
J. Qu, L. Wang, Y. Hu, L. Wang, R. You and M. Li, "Preparation of Silk Fibroin Microspheres and Its Cytocompatibility," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 1, 2013, pp. 84-90. doi: 10.4236/jbnb.2013.41011.
References
[1]   J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves and R. L. Reis, “Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends,” Journal of The Royal Society Interface, Vol. 4, No. 17, 2007, pp. 999-1030. doi:10.1098/rsif.2007.0220

[2]   P. B. Malafaya, G. A. Silva and R. L. Reis, “Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications,” Advanced Drug Delivery, Vol. 4-5, No. 59, 2007, pp. 207-233. doi:org/10.1016/j.addr.2007.03.012

[3]   G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond and D. L. Kaplan, “Silk-Based Biomaterials,” Biomaterials, Vol. 24, No. 3, 2003, pp. 401-416. doi:org/10.1016/S0142-9612(02)00353-8

[4]   C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Process in Polymer Science, Vol. 32, No. 8-9, 2007, pp. 991-1007. doi:org/10.1016/j.progpolymsci.2007.05.013

[5]   N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada and Y. Imai, “Attachment and Growth of Cultured Fibroblast Cells on Silk Protein Matrices,” Journal of Biomedical Materials Research, Vol. 29, No. 10, 1995, pp. 1215-1221. doi:10.1002/jbm.820291008

[6]   R. E. Unger, K. Peters, M. Wolf, A. Motta, C. Migliaresi and C. J. Kirkpatrick, “Endothelialization of a Non-Woven Silk Fibroin Net for Use in Tissue Engineering: Growth and Gene Regulation of Human Endothelial Cells,” Biomaterials, Vol. 25, No. 21, 2004, pp. 5137-5146. doi:org/10.1016/j.biomaterials.2003.12.040

[7]   X. Y. Luan, Y. Wang, X. Duan, Q. Y. Duan, M. Z. Li, S. Z. Lu, H. X. Zhang and X. G. Zhang, “Attachment and Growth of Human Bone Marrow Derived Mesenchymal Stem Cells on Regenerated Antheraea pernyi Silk Fibroin Films,” Biomedical Materials, Vol. 1, No. 4, 2006, pp. 181-187. doi:10.1088/1748-6041/1/4/001

[8]   Q. Lu, X. Hu, X. Q. Wang, J. A. Kluge, S. Z. Lu, P. Cebe and D. L. Kaplan, “Water-Insoluble Silk Films with Silk I Structure,” Acta Biomatrialia, Vol. 6, No. 4, 2010, pp. 1380-1387. doi:org/10.1016/j.actbio.2009.10.041

[9]   M. Z. Li, M. Ogiso and N. Minoura, “Enzymatic Degradation Behavior of Porous Silk Fibroin Sheets,” Biomaterials, Vol. 24, No. 2, 2003, pp. 357-365. doi:org/10.1016/S0142-9612(02)00326-5

[10]   Q. Lu, Y. L. Huang, M. Z. Li, B. Q. Zuo, S. Z. Lu, J. N. Wang, H. Zhu and D. L. Kaplan, “Silk Fibroin Electrogelation Mechanisms,” Acta Biomaterialia, Vol. 7, No. 6, 2011, pp. 2394-2400. doi:org/10.1016/j.actbio.2011.02.032

[11]   J. Zhou, C. B. Cao and X. L. Ma, “A Novel Three-Dimensional Tubular Scaffold Prepared from Silk Fibroin by Electrospinning,” International Journal of Biological Macromolecules, Vol. 45, No. 5, 2009, pp. 504-510. doi:org/10.1016/j.ijbiomac.2009.09.006

[12]   L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, V. N. Cordana and D. Kaplan, “Silk Implants for the Healing of Critical Size Bone Defects,” Bone, Vol. 37, No. 5, 2005, pp. 688-698. doi:org/10.1016/j.bone.2005.06.010

[13]   L. Soffer, X. Q. Wang, X. H. Zhang, J. Kluge, L. Dorfmann, D. L. Kaplan and G. Leisk, “Silk-Based Electrospun Tubular Scaffolds for Tissue-Engineered Vascular Grafts,” Journal of Biomaterials and Science, Polymer Edition, Vol. 19, No. 5, 2008, pp. 653-664. doi:10.1163/156856208784089607

[14]   L. Uebersax, H. P. Merkle and L. Meinel, “Insulin-Like Growth Factor I Releasing Silk Fibroin Scaffolds Induce Chondrogenic Differentiation of Human Mesenchymal Stem Cells,” Journal of Controlled Release, Vol. 127, No. 1, 2008, pp. 12-21. doi:org/10.1016/j.jconrel.2007.11.006

[15]   J. Kundu, Y. Chung, Y. H. Kim, G. Tae and S. C. Kundu, “Silk ?broin Nanoparticles for Cellular Uptake and Control Release,” International Journal of Pharmaceutics, Vol. 388, No. 1-2, 2010, pp. 242-250. doi:org/10.1016/j.ijpharm.2009.12.052

[16]   S. Lammel, X. Hu, S. H. Park and L. K. David, “Controlling Silk ?broin Particle Features for Drug Delivery,” Biomaterials, Vol. 31, No. 16, 2010, pp. 4583-4591. doi:org/10.1016/j.biomaterials.2010.02.024

[17]   T. Imsombut, P. Srihanam, P. Srihanam and Y. Baimark, “Genipin-Cross-Linked Silk Fibroin Microspheres Prepared by the Simple Water-in-Oil Emulsion Solvent Diffusion Method,” Powder Technology, Vol. 203, No. 3, 2010, pp. 603-608. doi:org/10.1016/j.powtec.2010.06.027

[18]   J. H. Yeo, K. G. Lee, Y. W. Lee and S. Y. Kim, “Simple Preparation and Characteristics of Silk Fibroin Microsphere,” European Polymer Journal, Vol. 39, No. 6, 2003, pp. 1195-1199. doi:org/10.1016/S0014-3057(02)00359-2

[19]   X. Q. Wang, E. Wenk and A. Matsumoto, “Silk Microspheres for Encapsulation and Controlled Release,” Journal of Controlled Release, Vol. 117, No. 3, 2007, pp. 360-370. doi:org/10.1016/j.jconrel.2006.11.021

[20]   E. Wenk, A. J. Wandrey, H. P. Merkle and L. Meinel, “Silk Fibroin Spheres as a Platform for Controlled Drug Delivery,” Journal of Controlled Release, Vol. 132, No. 1, 2008, pp. 26-34. doi:org/10.1016/j.jconrel.2008.08.005

[21]   J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Mueller and L. G. Griffith, “Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition,” Tissue Engineering, Vol. 7, No. 5, 2001, pp. 557-572. doi:10.1089/107632701753213183

[22]   J. F. Sola, F. Fatjo, E. Sacanella, R. Estruch, X. Bosch, A. U. Marquez and J. M. Nicolas, “Evidence of Apoptosis in Alcoholic Cardiomyopathy,” Human Pathology, Vol. 37, No. 8, 2006, pp. 1100-1110. doi:10.1016/j.humpath.2006.03.022

[23]   U. H. Jin, D. Y. Lee, D. S. Kim, I. S. Lee and C. H. Kim, “Induction of Mitochondria-Mediated Apoptosis by Methanol Fraction of Ulmus davi-diana Planch (Ulmaceae) in U87 Glioblastoma Cells,” Environmental Toxicology and Pharmacology, Vol. 22, No. 2, 2006, pp. 136-141. doi:org/10.1016/j.etap.2006.01.005

[24]   Y. L. Cheng, W. L. Chang, S. C. Lee, Y. G. Liu, C. J. Chen, S. Z. Lin, N. M. Tsai, D. S. Yu, C. Y. Yen and H. J. Harn, “Acetone Extract of Angelica sinensis Inhibits Proliferation of Human Cancer Cells via Inducing Cell Cycle Arrest and Apoptosis,” Life Sciences, Vol. 75, No. 13, 2004, pp. 1579-1594. doi:org/10.1016/j.lfs.2004.03.009

[25]   S. Sofia, M. B. McCarthy, G. Gronowicz and D. L. Kaplan, “Functionalized Silk-Based Biomaterials for Bone Formation,” Journal of Biomedical Materials Research, Vol. 54, No. 1, 2001, pp. 139-148. doi:10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7

[26]   Y. Tamada, “New Process to Form a Silk Fibroin Porous 3-D Structure,” Biomacromolecules, Vol. 6 No. 6, 2005, pp. 3100-3106. doi:10.1021/bm050431f

 
 
Top