APM  Vol.3 No.1 , January 2013
Strong Convergence of a General Iterative Algorithm for Mixed Equilibrium, Variational Inequality and Common Fixed Points Problems
Author(s) Tanakit Thianwan*
ABSTRACT

The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.


Cite this paper
T. Thianwan, "Strong Convergence of a General Iterative Algorithm for Mixed Equilibrium, Variational Inequality and Common Fixed Points Problems," Advances in Pure Mathematics, Vol. 3 No. 1, 2013, pp. 83-98. doi: 10.4236/apm.2013.31011.
References
[1]   W. Takahashi, “Nonlinear Functional Analysis: Fixed Point Theory and Its Applications,” Yokohama Publishers, Yokohama, 2000.

[2]   F. Deutsch and I. Yamada, “Minimizing Certain Convex Functions over the Intersection of the Fixed Point Set of Nonexpansive Mappings,” Numerical Functional Analysis and Optimization, Vol. 19, No. 1-2, 1998, pp. 33-56. doi:10.1080/01630569808816813

[3]   G. Marino and H. K. Xu, “A General Iterative Method for Nonexpansive Mappings in Hilbert Spaces,” Journal of Mathematical Analysis and Applications, Vol. 318, No. 1, 2006, pp. 43-52. doi:10.1016/j.jmaa.2005.05.028

[4]   H. K. Xu, “Iterative Algorithms for Nonlinear Operators,” Journal London Mathematical Society, Vol. 66, No. 1, 2002, pp. 240-256. doi:10.1112/S0024610702003332

[5]   H. K. Xu, “An Iterative Approach to Quadratic Optimization,” Journal of Optimization Theory and Applications, Vol. 116, 2003, pp. 659-678. doi:10.1023/A:1023073621589

[6]   I. Yamada, “The Hybrid Steepest Descent Method for the Variational Inequality Problem of the Intersection of Fixed Point Sets of Nonexpansive Mappings,” In: D. Butnariu, Y. Censor and S. Reich, Eds., Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, Amsterdam, 2001, pp. 473-504. doi:10.1016/S1570-579X(01)80028-8

[7]   A. Moudafi, “Viscosity Approximation Methods for Fixed Points Problems,” Journal of Mathematical Analysis and Applications, Vol. 241, No. 1, 2000, pp. 46-55. doi:10.1006/jmaa.1999.6615

[8]   R. U. Verma, “Generalized System for Relaxed Cocoercive Variational Inequalities and Its Projection Methods,” Journal of Optimization Theory and Applications, Vol. 121, No. 1, 2004, pp. 203-210. doi:10.1023/B:JOTA.0000026271.19947.05

[9]   R. U. Verma, “General Convergence Analysis for Two-Step Projection Methods and Application to Variational Problems,” Applied Mathematics Letters, Vol. 18, No. 2, 2005, pp. 1286-1292. doi:10.1016/j.aml.2005.02.026

[10]   R. U. Verma, “Sensitivity Analysis for Relaxed Cocoercive Nonlinear Quasivariational Inclusions,” Journal of Applied Mathematics and Stochastic Analysis, No. 3, 2006, pp. 1-10. doi:10.1155/JAMSA/2006/52041

[11]   W. Takahashi and M. Toyoda, “Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings,” Journal of Optimization Theory and Applications, Vol. 118, No. 2, 2003, pp. 417-428. doi:10.1023/A:1025407607560

[12]   H. Iiduka and W. Takahashi, “Strong Convergence Theorems for Nonexpansive Mappings and Inverse-Strongly Monotone Mappings,” Nonlinear Analysis, Vol. 61, No. 4, 2005, pp. 341-350. doi:10.1016/j.na.2003.07.023

[13]   X. Qin, S. M. Kang and M. Shang, “Strong Convergence Theorems of k-Strict Pseudo-Contractions in Hilbert Spaces,” Czechoslovak Mathematical Journal, Vol. 59, No. 3, 2009, pp. 695-706. doi:10.1007/s10587-009-0041-3

[14]   L. C. Ceng and J. C. Yao, “A Hybrid Iterative Scheme for Mixed Equilibrium Problems and Fixed Point Problems,” Journal of Computational and Applied Mathematics, Vol. 214, No. 1, 2008, pp. 186-201. doi:10.1016/j.cam.2007.02.022

[15]   P. L. Combettes and S. A. Hirstoaga, “Equilibrium Programming in Hilbert Spaces,” Journal of Nonlinear and Convex Analysis, Vol. 6, No. 1, 2005, pp. 117-136.

[16]   S. D. Flam and A. S. Antipin, “Equilibrium Programming Using Proximal-Like Algorithms,” Mathematical Programming, Vol. 78, No. 1, 1997, pp. 29-41. doi:10.1007/BF02614504

[17]   E. Blum and W. Oettli, “From Optimization and Variational Inequalities to Equilibrium Problems,” Mathematics Student-India, Vol. 63, No. 1-4, 1994, pp. 123-145.

[18]   J. W. Peng and J. C. Yao, “A New Hybrid-Extragradient Method for Generalized Mixed Equilibrium Problems and Fixed Point Problems and Variational Inequality Problems,” Taiwanese Journal of Mathematics, Vol. 12, No. 6, 2008, pp. 1401-1432.

[19]   J. W. Peng and J. C. Yao, “Strong Convergence Theorems of Iterative Scheme Based on the Extragradient Method for Mixed Equilibrium Problems and Fixed Point Problems,” Mathematical and Computer Modelling, Vol. 49, No. 9-10, 2009, pp. 1816-1828. doi:10.1016/j.mcm.2008.11.014

[20]   S. Takahashi and W. Takahashi, “Viscosity Approximation Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces,” Journal of Mathematical Analysis and Applications, Vol. 331, No. 1, 2007, pp. 506- 515. doi:10.1016/j.jmaa.2006.08.036

[21]   M. Shang, Y. Su and X. Qin, “A General Iterative Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces,” Fixed Point Theory and Applications, 2007, Article ID: 95412.

[22]   H. H. Bauschke, “The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space,” Journal of Mathematical Analysis and Applications, Vol. 202, No. 1, 1996, pp. 150-159. doi:10.1006/jmaa.1996.0308

[23]   H. H. Bauschke and J. M. Borwein, “On Projection Algorithms for Solving Convex Feasibility Problems,” SIAM: SIAM Review, Vol. 38, No. 3, 1996, pp. 367-426. doi:10.1137/S0036144593251710

[24]   P. L. Combettes, “Constrained Image Recovery in a Product Space,” Proceedings of the IEEE International Conference on Image Processing, Washington DC, 23-26 October 1995, pp. 2025-2028. doi:10.1109/ICIP.1995.537406

[25]   P. L. Combettes, “The Foundations of Set Theoretic Estimation,” Proceeding of the IEEE, Vol. 81, No. 2, 1993, 182-208. doi:10.1109/5.214546

[26]   F. Deutsch and H. Hundal, “The Rate of Convergence of Dykstra’s Cyclic Projections Algorithm: The Polyhedral Case,” Numerical Functional Analysis and Optimization, Vol. 15, No. 5-6, 1994, pp. 537-565. doi:10.1080/01630569408816580

[27]   D. C. Youla, “Mathematical Theory of Image Restoration by the Method of Convex Projections,” In: H. Stark, Ed., Image Recovery: Theory and Applications, Academic Press, Gainesville, 1987, pp. 29-77.

[28]   I. Yamada and N. Ogura, “Hybrid Steepest Descent Method for the Variational Inequality Problem over the Fixed Point Set of Certain Quasi Nonexpansive Mappings,” Numerical Functional Analysis and Optimization, Vol. 25, No. 7-8, 2004, pp. 619-655. doi:10.1081/NFA-200045815

[29]   S. Atsushiba and W. Takahashi, “Strong Convergence Theorems for a Finite Family of Nonexpansive Mappings and Applications,” Indian Journal of Mathematics, Vol. 41, No. 3, 1999, pp. 435-453.

[30]   G. Emmanuele, “A Remark on a Paper: Common Fixed Points of Nonexpansive Mappings by Iteration by P. K. F. Kuhfittig,” Pacific Journal of Mathematics, Vol. 110, No. 2, 1984, pp. 283-285. doi:10.2140/pjm.1984.110.283

[31]   P. K. F. Kuhfittig, “Common Fixed Points of Nonexpansive Mappings by Iteration,” Pacific Journal of Mathematics, Vol. 97, No. 1, 1981, pp. 137-139. doi:10.2140/pjm.1981.97.137

[32]   W. Takahashi, “Weak and Strong Convergence Theorems for Families of Nonexpansive Mappings and Their Applications,” Annales Universitatis Mariae Curie-Sklodowska, Vol. 51, 1997, pp. 277-292.

[33]   W. Takahashi and K. Shimoji, “Convergence Theorems for Nonexpansive Mappings and Feasibility Problems,” Mathematical and Compute Modelling, Vol. 32, No. 11, 2000, pp. 1463-1471. doi:10.1016/S0895-7177(00)00218-1

[34]   X. Qin, M. Shang and Y. Su, “Strong Convergence of a General Iterative Algorithm for Equilibrium Problems and Variational Inequality Problems,” Mathematical and Compute Modelling, Vol. 48, No. 7-8, 2008, pp. 1033-1046. doi:10.1016/j.mcm.2007.12.008

[35]   V. Colao, G. Marino and H. K. Xu, “An Iterative Method for Finding Common Solutions of Equilibrium and Fixed Point Problems,” Journal of Mathematical Analysis and Applications, Vol. 344, No. 1, 2008, pp. 340-352. doi:10.1016/j.jmaa.2008.02.041

[36]   Y. Yao, M. A. Noor and Y. C. Liouc, “On Iterative Methods for Equilibrium Problems,” Nonlinear Analysis, Vol. 70, No. 9, 2009, pp. 497-509. doi:10.1016/j.na.2007.12.021

[37]   A. Kangtunyakarn and S. Suantai, “A New Mapping for Finding Common Solutions of Equilibrium Problems and Fixed Point Problems of Finite Family of Nonexpansive Mappings,” Nonlinear Analysis, Vol. 71, No. 10, 2009, pp. 4448-4460. doi:10.1016/j.na.2009.03.003

[38]   Z. Opial, “Weak Convergence of Successive Approximations for Nonexpansive Mappins,” Bulletin of the American Mathematical Society, Vol. 73, No. 4, 1967, pp. 591- 597. doi:10.1090/S0002-9904-1967-11761-0

[39]   R. T. Rockafellar, “On the Maximality of Sums of Nonlinear Monotone Operators,” Transactions of the American Mathematical Society, Vol. 149, No. 1, 1970, pp. 75-88. doi:10.1090/S0002-9947-1970-0282272-5

[40]   T. Suzuki, “Strong Convergence of Krasnoselskii and Mann’s Type Sequences for One-Parameter Nonexpansive Semigroups without Bochner Integrals,” Journal of Mathematical Analysis and Applications, Vol. 305, No. 1, 2005, pp. 227-239. doi:10.1016/j.jmaa.2004.11.017

[41]   B. Martinet, “Perturbation Des Méthodes d’Optimisation,” AIRO Analyse Numérique, Vol. 12, No. 2, 1978, pp. 153-171.

[42]   R. T. Rockafellar, “Monotone Operators and the Proximal Point Algorithm,” IAM: SIAM Journal on Control and Optimization, Vol. 14, No. 5, 1976, pp. 877-898. doi:10.1137/0314056

[43]   M. C. Ferris, “Finite Termination of the Proximal Point Algorithm,” Mathematical Programming, Vol. 50, No. 1-3, 1991, pp. 359-366. doi:10.1007/BF01594944

 
 
Top