Back
 APM  Vol.3 No.1 , January 2013
Hyperbolic Coxeter Pyramids
Abstract: Hyperbolic Coxeter polytopes are defined precisely by combinatorial type. Polytopes in hyperbolic n-space with n + p faces that have the combinatorial type of a pyramid over a product of simplices were classified by Tumarkin for small p. In this article we generalise Tumarkin’s methods and find the remaining hyperbolic Coxeter pyramids.
Cite this paper: J. Mcleod, "Hyperbolic Coxeter Pyramids," Advances in Pure Mathematics, Vol. 3 No. 1, 2013, pp. 78-82. doi: 10.4236/apm.2013.31010.
References

[1]   E. B. Vinberg, “Hyperbolic Groups of Reflections,” Uspekhi Matematicheskikh Nauk, Vol. 40, 1985, pp. 29-66.

[2]   F. Lannér, “On Complexes with Transitive Groups of Auto-morphisms,” Communications du Séminaire Mathématique de l'Université de Lund, Vol. 11, 1950, p. 71.

[3]   N. W. Johnson, R. Kellerhals, J. G. Ratcliffe and S. T. Tschantz, “Commensurability Classes of Hyperbolic Coxeter Groups,” Linear Algebra and Its Applications, Vol. 345, No. 1, 2002, pp. 119-147. doi:10.1016/S0024-3795(01)00477-3

[4]   N. W. Johnson, R. Kellerhals, J. G. Ratcliffe and S. T. Tschantz, “The Size of a Hyperbolic Coxeter Simplex,” Transformation Groups, Vol. 4, No. 4, 1999, pp. 329-353. doi:10.1007/BF01238563

[5]   M. Chein, “Recherce des Graphes des Matrices de Coxeter Hyperboliques d’Ordre ≤10,” Revue Francaise Informatique Recherche Opérationnelle, Vol. 3, No. 2, 1969, pp. 3-16.

[6]   A. A. Felikson, “Coxeter Decomposition of Hyperbolic Simplexes,” Sbornik: Mathematics, Vol. 193, No. 12, 2002, pp. 11-12. doi:10.1070/SM2002v193n12ABEH000702

[7]   P. V. Tumarkin, “Hyperbolic Coxeter Polytopes in Hm with n + 2 Hyperfacets,” Mathematical Notes, Vol. 75, No. 5-6, 2004, pp. 848-854. doi:10.1023/B:MATN.0000030993.74338.dd

[8]   P. V. Tumarkin, “Hyperbolic n-Dimensional Coxeter Poly-topes with n + 3 Facets,” Transactions of the Moscow Mathematical Society, Vol. 58, No. 4, 2004, pp. 235-250.

[9]   G. Ziegler, “Lectures on Polytopes,” Springer-Verlag, New York, 1995.

[10]   E. B. Vinberg, “Geometry II,” Springer-Verlag, Berlin, 1993.

[11]   A. A. Felikson and P. V. Tumarkin, “Hyperbolic Subalgebras of Hyperbolic Kac-Moody Algebras,” Transformation Groups, Vol. 17, No. 1, 2012, pp. 87-122. doi:10.1007/s00031-011-9169-y

 
 
Top