FNS  Vol.4 No.1 , January 2013
Tyrosinase Biosensor Used for the Determination of Catechin Derivatives in Tea: Correlation with HPLC/DAD Method
Abstract: Tea, one of the most popular consumed worldwide beverages, is known to be rich in polyphenols, more particularly in catechins. An amperometric biosensor based on tyrosinase was developed in order to monitor the phenolic content in black and green teas. The enzyme was immobilised by coreticulation with glutaraldehyde on carbon screen-printed electrodes (CSPE). Initially, the performances of the biosensor were evaluated referring to catechol as a model substrate. This analytical tool exhibits a high sensitivity (217 nA/μM), low limit of detection (LOD) = 0.03 μM, good intra-electrode and inter-electrode reproducibilities with RSD lower than 3% (n = 5 injections) and RSD = 8.14% (n = 12 sensors) respectively. The storage stability was also studied; the biosensor retained successively 85% and 70% of its initial response after 34 and 53 days. Subsequently, several catechin derivatives frequently found in teas were tested and classified relatively to their sensitivities. For tea samples, the results obtained with the biosensors were compared to high performance liquid chromatography (HPLC) analysis. A good correlation between the two methods was obtained. The calculated recovery was between 90% and 96%, proving that the proposed tyrosinase biosensor can be an alternative analytical tool for global determination of catechin derivatives in tea.
Cite this paper: S. Nadifiyine, C. Calas-Blanchard, A. Amine and J. Marty, "Tyrosinase Biosensor Used for the Determination of Catechin Derivatives in Tea: Correlation with HPLC/DAD Method," Food and Nutrition Sciences, Vol. 4 No. 1, 2013, pp. 108-118. doi: 10.4236/fns.2013.41015.

[1]   G. G. Duthie, P. T. Gardner and J. A. M. Kyle, “Plant Polyphenols: Are They the New Magic Bullet?” Proceedings of the Nutrition Society, Vol. 62, No. 03, 2003, pp. 599-603. doi:10.1079/PNS2003275

[2]   N. Khan and H. Mukhtar, “Tea Polyphenols for Health Promotion,” Life Sciences, Vol. 81, No. 7, 2007, pp. 519-533. doi:10.1016/j.lfs.2007.06.011

[3]   S. Gupta, B. Saha and A. K. Giri, “Comparative Antimutagenic and Anticlastogenic Effects of Green Tea and Black Tea: A Review,” Mutation Research/Reviews in Mutation Research, Vol. 512, No. 1, 2002, pp. 37-65. doi:10.1016/S1383-5742(02)00024-8

[4]   P. C. H. Hollman and M. B. Katan, “Dietary Flavonoids: Intake, Health Effects and Bioavailability,” Food and Chemical Toxicology, Vol. 37, No. 9-10, 1999, pp. 937-942. doi:10.1016/S0278-6915(99)00079-4

[5]   J. Hong, T. J. Smith, C. Ho, D. A. August and C. S. Yang, “Effects of Purified Green and Black Tea Polyphenols on Cyclooxygenase-and Lipoxygenase-Dependent Metabolism of Arachidonic Acid in Human Colon Mucosa and Colon Tumor Tissues,” Biochemical Pharmacology, Vol. 62, No. 9, 2001, pp. 1175-1183. doi:10.1016/S0006-2952(01)00767-5

[6]   Y. Kuroda and Y. Hara, “Antimutagenic and Anticarcinogenic Activity of Tea Polyphenols,” Mutation Research/Reviews in Mutation Research, Vol. 436, No. 1, 1999, pp. 69-97. doi:10.1016/S1383-5742(98)00019-2

[7]   J. Sano, T. Ogawa, S. Inami, F. Ishibashi, K. Okamatsu, H. Kamon, K. Seimiya, G. Takagi, S. Sakai, A. Nomura and K. Mizuno, “Effect of Green Tea Intake on the Development of Coronary Artery Disease,” Journal of the American College of Cardiology, Vol. 41, No. 6, 2003, pp. 531-531. doi:10.1016/S0735-1097(03)82849-8

[8]   S. Uesato, Y. Kitagawa, M. Kamishimoto, A. Kumagai, H. Hori and H. Nagasawa, “Inhibition of Green Tea Catechins against the Growth of Cancerous Human Colon and Hepatic Epithelial Cells,” Cancer Letters, Vol.170, No 1, 2001, pp. 41-44. doi:10.1016/S0304-3835(01)00571-7

[9]   J. A. Vinson, K. Teufel and N. Wu, “Green and Black Teas Inhibit Atherosclerosis by Lipid, Antioxidant, and Fibrinolytic Mechanisms,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 11, 2004, pp. 3661-3665. doi:10.1021/jf035255l

[10]   J. M. Launer, L. J. Geleijnse, A. Hofman, H. A. P. Pols, J. C. M. Witteman, “Tea Flavonoids May Protect against Atherosclerosis: The Rotterdam Study,” Archives of Internal Medicine, Vol. 159, No. 18, 1999, pp. 2170-2174.

[11]   L. Lin, P. Chen and J. M. Harnly, “New Phenolic Components and Chromatographic Profiles of Green and Fermented Teas,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 17, 2008, pp. 8130-8140. doi:10.1021/jf800986s

[12]   M. Friedman, C. E. Levin, S. H. Choi, E. Kozukue and N. Kozukue, “HPLC Analysis of Catechins, Theaflavins, and Alkaloids in Commercial Teas and Green Tea Dietary Supplements: Comparison of Water and 80% Ethanol/Water Extracts,” Journal of Food Science, Vol. 71, No. 6, 2006, pp. C328-C337. doi:10.1111/j.1750-3841.2006.00090.x

[13]   A. P. Neilson, R. J. Green, K. V. Wood and M. G. Ferruzzi, “High-Throughput Analysis of Catechins and theaflavins by high performance liquid chromatography with Diode Array Detection,” Journal of Chromatography A, Vol. 1132, No. 1-2, 2006, pp. 132-140. doi:10.1016/j.chroma.2006.07.059

[14]   S. T. Saito, A. Welzel, E. S. Suyenaga and F.Bueno, “A Method for Fast Determination of Epigallocatechin Gallate (EGCG), Epicatechin (EC), Catechin (C) and Caffeine (CAF) in Green Tea Using HPLC,” Ciência e Tecnologia de Alimentos, Vol. 26, No. 2, 2006, pp. 394-400. doi:10.1590/S0101-20612006000200023

[15]   X. R. Yang, C. X. Ye, J. K. Xu and Y. M. Jiang, “Simultaneous Analysis of Purine Alkaloids and Catechins in Camellia Sinensis, Camellia Ptilophylla and Camellia Assamica var. Kucha by HPLC,” Food Chemistry, Vol. 100, No. 3, 2007, pp. 1132-1136. doi:10.1016/j.foodchem.2005.11.021

[16]   J. J. Dalluge and B. C. Nelson, “Determination of Tea Catechins,” Journal of Chromatography A, Vol. 881, No. 1-2, 2000, pp. 411-424. doi:10.1016/S0021-9673(00)00062-5

[17]   A. Escarpa and M. C. Gonzalez, “An Overview of Analytical Chemistry of Phenolic Compounds in Foods,” Critical Reviews in Analytical Chemistry, Vol. 31, No. 2, 2001, pp. 57-139. doi:10.1080/20014091076695

[18]   P. A. Kilmartin and C. F. Hsu, “Characterisation of Polyphenols in Green, Oolong, and Black Teas, and in Coffee, Using Cyclic Voltammetry,” Food Chemistry, Vol. 82, No. 4, pp. 501-512. doi:10.1016/S0308-8146(03)00066-9

[19]   J. Piljac-Zegarac, L. Valek, S. Martinez and A. Belscak, “Fluctuations in the Phenolic Content and Antioxidant Capacity of Dark Fruit Juices in Refrigerated Storage,” Food Chemistry, Vol. 113, No. 2, 2009, pp. 394-400. doi:10.1016/j.foodchem.2008.07.048

[20]   I. Novak, M. Seruga and S. Komorsky-Lovric, “Characterisation of Catechins in Green and Black Teas Using Square-Wave Voltammetry and RP-HPLC-ECD,” Food Chemistry, Vol. 122, No. 4, 2010, pp. 1283-1289. doi:10.1016/j.foodchem.2010.03.084

[21]   A. Romani, M. Minunni, N. Mulinacci, P. Pinelli, F. F. Vincieri, M. Del Carlo and M. Mascini, “Comparison among Differential Pulse Voltammetry, Amperometric Biosensor, and HPLC/DAD Analysis for Polyphenol Determination,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 4, 2000, pp. 1197-1203. doi:10.1021/jf990767e

[22]   F. de Lima, B. G. Lucca, A. M. J. Barbosa, V. S. Ferreira, S. K. Moccelini, A. C. Franzoi and I. C. Vieira, “Biosensor Based on Pequi Polyphenol Oxidase Immobilized on Chitosan Crosslinked with Cyanuric Chloride for Thiodicarb Determination,” Enzyme and Microbial Technology, Vol. 47, No. 4, 2010, pp. 153-158. doi:10.1016/j.enzmictec.2010.05.006

[23]   M. Diaconu, S. C. Litescu and G. L. Radu, “Laccase-MWCNT-Chitosan Biosensor: A New Tool for Total Polyphenolic Content Evaluation from in Vitro Cultivated Plants,” Sensors and Actuators B: Chemical, Vol. 145, No. 2, 2010, pp. 800-806. doi:10.1016/j.snb.2010.01.064

[24]   S. C. Fernandes, S. K. Moccelini, C. W. Scheeren, P. Migowski, J. Dupont, M. Heller, G. A. Micke and I. C. Vieira, “Biosensor for Chlorogenic Acid Based on an Ionic Liquid Containing Iridium Nanoparticles and Polyphenol Oxidase,” Talanta, Vol. 79, No. 2, 2009, pp. 222-228. doi:10.1016/j.talanta.2009.03.039

[25]   P. Ibarra-Escutia, J. J. Gómez, C. Calas-Blanchard, J. L. Marty and M. T.Ramírez-Silva, “Amperometric Biosensor Based on a High Resolution Photopolymer Deposited onto a Screen-Printed Electrode for Phenolic Compounds Monitoring in Tea Infusions,” Talanta, Vol. 81, No. 4-5, 2010, pp. 1636-1642. doi:10.1016/j.talanta.2010.03.017

[26]   J. Kulys and R. Vidziunaite, “Amperometric Biosensors Based on Recombinant Laccases for Phenols Determination,” Biosensors and Bioelectronics, Vol. 18, No. 2-3, 2003, pp. 319-325. doi:10.1016/S0956-5663(02)00172-0

[27]   L. D. Mello, M. D. P. T. Sotomayor and L. T. Kubota, “HRP-Based Amperometric Biosensor for the Polyphenols Determination in Vegetables Extract,” Sensors and Actuators B: Chemical, Vol. 96, No. 3, 2003, pp. 636-645. doi:10.1016/j.snb.2003.07.008

[28]   L. D. Mello, A. A. Alves, D. V. Macedo and L. T. Kubota, “Peroxidase-Based Biosensor as a Tool for a Fast Evaluation of Antioxidant Capacity of Tea,” Food Chemistry, Vol. 92, No. 3, 2005, pp. 515-519. doi:10.1016/j.foodchem.2004.08.019

[29]   B. Prieto-Simón, M. Cortina, M. Campàs and C. Calas-Blanchard, “Electrochemical Biosensors as a Tool for Antioxidant Capacity Assessment,” Sensors and Actuators B: Chemical, Vol. 129, No. 1, 2008, pp. 459-466. doi:10.1016/j.snb.2007.08.004

[30]   K. S. Abhijith, P. V. S. Kumar, M. A. Kumar and M. S. Thakur, “Immobilised Tyrosinase-Based Biosensor for the Detection of Tea Polyphenols,” Analytical and Bioanalytical Chemistry, Vol. 389, No. 7, 2007, pp. 2227-2234. doi:10.1007/s00216-007-1604-5

[31]   V. Carralero, M. L. Mena, A. Gonzalez-Cortés, P. Yá?ezSede?o and J. M. Pingarrón, “Development of a High Analytical Performance-Tyrosinase Biosensor Based on a Composite Graphite-Teflon Electrode Modified with Gold Nanoparticles,” Biosensors and Bioelectronics, Vol. 22, No. 5, 2006, pp. 730-736. doi:10.1016/j.bios.2006.02.012

[32]   M. A. Kim and W. Lee, “Amperometric Phenol Biosensor Based on Sol-Gel Silicate/Nafion Composite Film,” Analytica Chimica Acta, Vol. 479, No. 2, 2003, pp. 143-150. doi:10.1016/S0003-2670(02)01538-6

[33]   Rajesh, W. Takashima and K. Kaneto, “Amperometric Phenol Biosensor Based on Covalent Immobilization of Tyrosinase onto an Electrochemically Prepared Novel Copolymer Poly (N-3-Aminopropyl Pyrrole-Co-Pyrrole) Film,” Sensors and Actuators B: Chemical, Vol. 102, No. 2, 2004, pp. 271-277. doi:10.1016/j.snb.2004.04.028

[34]   P. Rijiravanich, K. Aoki, J. Chen, W. Surareungchai and M. Somasundrum, “Micro-Cylinder Biosensors for Phenol and Catechol Based on Layer-by-Layer Immobilization of Tyrosinase on Latex Particles: Theory and Experiment,” Journal of Electroanalytical Chemistry, Vol. 589, No. 2, 2006, pp. 249-258. doi:10.1016/j.jelechem.2006.02.019

[35]   H. B. Yildiz, J. Castillo, D. A. Guschin, L.Toppare and W. Schuhmann, “Phenol Biosensor Based on Electrochemically Controlled Integration of Tyrosinase in a Redox Polymer,” Microchimica Acta, Vol. 159, No. 1, 2007, pp. 27-34. doi:10.1007/s00604-007-0768-1

[36]   E. Akyilmaz, E. Yorganci and E. Asav, “Do Copper Ions Activate Tyrosinase Enzyme? A Biosensor Model for the Solution,” Bioelectrochemistry, Vol. 78, No. 2, 2010, pp. 155-160. doi:10.1016/j.bioelechem.2009.09.007

[37]   C. Apetrei, M. L. Rodríguez-Méndez and J. A. De Saja, “Amperometric Tyrosinase Based Biosensor Using an Electropolymerized Phosphate-Doped Polypyrrole Film as an Immobilization Support. Application for Detection of Phenolic Compounds,” Electrochimica Acta, Vol. 56, No. 24, 2011, pp. 8919-8925. doi:10.1016/j.electacta.2011.07.127

[38]   B. Lee and C. Ong, “Comparative Analysis of Tea Catechins and Theaflavins by High-Performance Liquid Chromatography and Capillary Electrophoresis,” Journal of Chromatography A, Vol. 881, No. 1-2, 2000, pp. 439-447. doi:10.1016/S0021-9673(00)00215-6

[39]   A. Arecchi, M. Scampicchio, S. Drusch and S. Mannino, “Nanofibrous Membrane Based Tyrosinase-Biosensor for the Detection of Phenolic Compounds,” Analytica Chimica Acta, Vol. 659, No. 1-2, 2010, pp. 133-136. doi:10.1016/j.aca.2009.11.039

[40]   H. Zejli, J. L. Hidalgo-Hidalgo de Cisneros, I. Naranjo-Rodriguez, B. Liu, K. R. Temsamani and J. L. Marty, “Phenol Biosensor Based on Sonogel-Carbon Transducer with Tyrosinase Alumina Sol-Gel Immobilization,” Analytica Chimica Acta, Vol. 612, No. 2, 2008, pp. 198-203. doi:10.1016/j.aca.2008.02.029

[41]   Y. Li, Z. Liu, Y. Liu, Y. Yang, G. Shen and R. Yu, “A Mediator-Free Phenol Biosensor Based on Immobilizing Tyrosinase to ZnO Nanoparticles,” Analytical Biochemistry, Vol. 349, No. 1, 2006, pp. 33-40. doi:10.1016/j.ab.2005.11.017

[42]   M. El Kaoutit, I. Naranjo-Rodriguez, K. R. Temsamani, and J. L. Hidalgo-Hidalgo de Cisneros, “The Sonogel-Carbon Materials as Basis for Development of Enzyme Biosensors for Phenols and Polyphenols Monitoring: A Detailed Comparative Study of Three Immobilization Matrixes,” Biosensors and Bioelectronics, Vol. 22, No. 12, 2007, pp. 2958-2966. doi:10.1016/j.bios.2006.12.008

[43]   A. M. Girelli, E. Mattei and D. Papaleo, “Tyrosinase Immobilized Reactor as a Fast Tool for Polyphenolic Index of Tea,” Journal of Food Composition and Analysis, Vol. 22, No. 7-8, 2009, pp. 709-713. doi:10.1016/j.jfca.2009.04.006

[44]   M. Pelillo, B. Biguzzi, A. Bendini, T. Gallina Toschi, M. Vanzini and G. Lercker, “Preliminary Investigation into Development of HPLC with UV and MS-Electrospray Detection for the Analysis of Tea Catechins,” Food Chemistry, Vol. 78, No. 3, 2002, pp. 369-374. doi:10.1016/S0308-8146(02)00112-7

[45]   C. Cabrera, R. Artacho and R. Giménez, “Beneficial Effects of Green Tea—A Review,” Journal of the American College of Nutrition, Vol. 25, No. 2, 2006, p. 79.

[46]   H. Mukhtar and N. Ahmad, “Tea Polyphenols: Prevention of Cancer and Optimizing Health,” The American Journal of Clinical Nutrition, Vol. 71, No. 6, 2000, p. 1698S.

[47]   L. Yao, Y. Jiang, N. Datta, R. Singanusong, X. Liu, J. Duan, K. Raymont, A. Lisle and Y. Xu, “HPLC Analyses of Flavanols and Phenolic Acids in the Fresh Young Shoots of Tea (Camellia sinensis) Grown in Australia,” Food Chemistry, Vol. 84, No. 2, 2004, pp. 253-263. doi:10.1016/S0308-8146(03)00209-7