Back
 OJApo  Vol.2 No.1 , January 2013
Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity
Abstract: The alpha class glutathione s-transferase (GST) isozyme GSTA4-4 (EC2.5.1.18) exhibits high catalytic efficiency towards 4-hydroxynon-2-enal (4-HNE), a major end product of oxidative stress induced lipid peroxidation. Exposure of cells and tissues to heat, radiation, and chemicals has been shown to induce oxidative stress resulting in elevated concentrations of 4-HNE that can be detrimental to cell survival. Alternatively, at physiological levels 4-HNE acts as a signaling molecule conveying the occurrence of oxidative events initiating the activation of adaptive pathways. To examine the impact of oxidative/electrophilic stress in a model with impaired 4-HNE metabolizing capability, we disrupted the Gsta4 gene that encodes GSTA4-4 inmice. The effect of electrophile and oxidants on embryonic fibroblasts (MEF) isolated from wild type (WT) and Gsta4 null mice were examined. Results indicate that in the absence of GSTA4-4, oxidant-induced toxicity is potentiated and correlates with elevated accumulation of 4-HNE adducts and DNA damage. Treatment of Gsta4 null MEF with 1,1,4-tris(acetyloxy)-2(E)-nonene [4-HNE(Ac)3], a pro-drug form of 4-HNE, resulted in the activation and phosphorylation of the c-jun-N-terminal kinase (JNK), extracellular-signal-regulated kinases (ERK 1/2) and p38 mitogen activated protein kinases (p38 MAPK) accompanied by enhanced cleavage of caspase-3. Interestingly, when recombinant mammalian or invertebrate GSTs were delivered to Gsta4 null MEF, activation of stress-related kinases in 4-HNE(Ac)3 treated Gsta4 null MEF were inversely correlated with the catalytic efficiency of delivered GSTs towards 4-HNE. Our data suggest that GSTA4-4 plays a major role in protecting cells from the toxic effects of oxidant chemicals by attenuating the accumulation of 4-HNE.
Cite this paper: K. McElhanon, C. Bose, R. Sharma, L. Wu, Y. Awasthi and S. Singh, "Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity," Open Journal of Apoptosis, Vol. 2 No. 1, 2013, pp. 1-11. doi: 10.4236/ojapo.2013.21001.
References

[1]   M. Perluigi, R. Coccia and D. A. Butterfield, “4-Hydroxy-2-nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies,” Antioxidants and Redox Signaling, Vol. 17, No. 11, 2012, pp. 1590-1609. doi:10.1089/ars.2011.4406

[2]   A. Winczura, D. Zdzalik and B. Tudek, “Damage of DNA and Proteins by Major Lipid Peroxidation Products in Genome Stability,” Free Radical Research, Vol. 46, No. 4, 2012, pp. 442-459. doi:10.3109/10715762.2012.658516

[3]   G. P. Voulgaridou, I. Anestopoulos, R. Franco, M. I. Panayiotidis and A. Pappa, “DNA Damage Induced by Endogenous Aldehydes: Current State of Knowledge,” Mutation Research, Vol. 711, No. 1-2, 2011, pp. 13-27. doi:10.1016/j.mrfmmm.2011.03.006

[4]   H. Esterbauer, R. J. Schaur and H. Zollner, “Chemistry and Biochemistry of 4-Hydroxynonenal, Malonaldehyde and Related Aldehydes,” Free Radical Biology and Medicine, Vol. 11, No. 1, 1991, pp. 81-128. doi:10.1016/0891-5849(91)90192-6

[5]   S. P. Singh, T. Chen, L. Chen, N. Mei, E. McLain, V. Samokyszyn, et al., “Mutagenic Effects of 4-Hydroxynonenal Triacetate, a Chemically Protected form of the Lipid Peroxidation Product 4-Hydroxynonenal, as Assayed in L5178Y/Tk+/-Mouse Lymphoma Cells,” Journal of Pharmacology and Experimental Therapeutics, Vol. 313, No. 2, 2005, pp. 855-861. doi:10.1124/jpet.104.080754

[6]   K. S. Fritz and D. R. Petersen, “An Overview of the Chemistry and Biology of Reactive Aldehydes,” Free Radical Biology and Medicine, 2012. (In Press) doi:10.1016/j.freeradbiomed.2012.06.025

[7]   Y. C. Awasthi, R. Sharma, J. Z. Cheng, Y. Yang, A. Sharma, S. S. Singhal, et al., “Role of 4-Hydroxynonenal in Stress-Mediated Apoptosis Signaling,” Molecular Aspects of Medicine, Vol. 24, No. 4-5, 2003, pp. 219-230. doi:10.1016/S0098-2997(03)00017-7

[8]   P. V. Usatyuk and V. Natarajan, “Hydroxyalkenals and Oxidized Phospholipids Modulation of Endothelial Cytoskeleton, Focal Adhesion and Adherens Junction Proteins in Regulating Endothelial Barrier Function,” Microvascular Research, Vol. 83, No. 1, 2012, pp. 45-55. doi:10.1016/j.mvr.2011.04.012

[9]   Y. Yang, A. Sharma, R. Sharma, B. Patrick, S. S. Singhal, P. Zimniak, et al., “Cells Preconditioned with Mild, Transient UVA Irradiation Acquire Resistance to Oxidative Stress and UVA-Induced Apoptosis: Role of 4-Hydroxynonenal in UVA-Mediated Signaling for Apoptosis,” Journal of Biological Chemistry, Vol. 278, No. 4, 2003, pp. 41380-41388. doi:10.1074/jbc.M305766200

[10]   S. O. Abarikwu, A. B. Pant and E. O. Farombi, “4-Hydroxynonenal Induces Mitochondrial-Mediated Apoptosis and Oxidative Stress in SH-SY5Y Human Neuronal Cells,” Basic & Clinical Pharmacology & Toxicology, Vol. 110, No. 5, 2012, pp. 441-448. doi:10.1111/j.1742-7843.2011.00834.x

[11]   W. Black, Y. Chen, A. Matsumoto, D. C. Thompson, N. Lassen, A. Pappa, et al., “Molecular Mechanisms of ALDH3A1-Mediated Cellular Protection against 4-Hydroxy-2-nonenal,” Free Radical Biology and Medicine, Vol. 52, No. 9, 2012, pp. 1937-1944. doi:10.1016/j.freeradbiomed.2012.02.050

[12]   P. V. Usatyuk and V. Natarajan, “Role of Mitogen-Activated Protein Kinases in 4-Hydroxy-2-nonenal-Induced Actin Remodeling and Barrier Function in Endothelial Cells,” Journal of Biological Chemistry, Vol. 279, No. , 2004, pp. 11789-11797. doi:10.1074/jbc.M311184200

[13]   J. Z. Cheng, S. S. Singhal, M. Saini, J. Singhal, J. T. Piper, F. J. Van Kuijk, et al., “Effects of mGST A4 Transfection on 4-Hydroxynonenal-Mediated Apoptosis and Differentiation of K562 Human Erythroleukemia Cells,” Archives of Biochemistry and Biophysics, Vol. 372, No. 1, 1999, pp. 29-36. doi:10.1006/abbi.1999.1479

[14]   R. Sharma, A. Sharma, S. Dwivedi, P. Zimniak, S. Awasthi and Y. C. Awasthi, “4-Hydroxynonenal Self-Limits Fas-Mediated DISC-Independent Apoptosis by Promoting Export of Daxx from the Nucleus to the Cytosol and Its Binding to Fas,” Biochemistry, Vol. 47, No. 1, 2008, pp. 143-156. doi:10.1021/bi701559f

[15]   P. Zimniak, M. A. Eckles, M. Saxena and Y. C. Awasthi, “A Subgroup of Class Alpha Glutathione S-Transferases. Cloning of cDNA for Mouse Lung Glutathione S-Transferase GST 5.7,” FEBS Letters, Vol. 313, No. 2, 1992, pp. 173-176. doi:10.1016/0014-5793(92)81438-R

[16]   L. M. Balogh, I. Le Trong, K. A. Kripps, L. M. Shireman, R. E. Stenkamp, W. Zhang, et al., “Substrate Specificity Combined with Stereopromiscuity in Glutathione Transferase A4-4-Dependent Metabolism of 4-Hydroxynonenal,” Biochemistry, Vol. 49, No. 7, 2010, pp. 1541-1548. doi:10.1021/bi902038u

[17]   J. Z. Cheng, Y. Yang, S. P. Singh, S. S. Singhal, S. Awasthi, S. S. Pan, et al., “Two distinct 4-Hydroxy-nonenal Metabolizing Glutathione S-Transferase Isozymes Are Differentially Expressed in Human Tissues,” Biochemical and Biophysical Research Communications, Vol. 282, No. 5, 2001, pp. 1268-1274. doi:10.1006/bbrc.2001.4707

[18]   M. R. Engle, S. P. Singh, P. J. Czernik, D. Gaddy, D. C. Montague, J. D. Ceci, et al., “Physiological Role of mGSTA4-4, a Glutathione S-Transferase Metabolizing 4-Hydroxynonenal: Generation and Analysis of mGsta4 Null Mouse,” Toxicology and Applied Pharmacology, Vol. 194, No. 3, 2004, pp. 296-308. doi:10.1016/j.taap.2003.10.001

[19]   M. D. Neely, V. Amarnath, C. Weitlauf and T. J. Montine, “Synthesis and Cellular Effects of an Intracellularly Activated Analogue of 4-Hydroxynonenal,” Chemical Research in Toxicology, Vol. 15, No. 1, 2002, pp. 40-47. doi:10.1021/tx010115w

[20]   J. Xu, Preparation, “Preparation, Culture, and Immortalization of Mouse Embryonic Fibroblasts,” John Wiley & Sons, Inc., Hoboken, 2001.

[21]   R. B. B. Hogan, F. Costantini and E. Lacy, “Manipulating the Mouse Embryo: A Laboratory Manual,” Cold Spring Habor Laboratory Press, Cold Spring Habor, New York, 1994.

[22]   L. Zimniak, S. Awasthi, S. K. Srivastava and P. Zimniak, “Increased Resistance to Oxidative Stress in Transfected Cultured Cells Overexpressing Glutathione S-Transferase mGSTA4-4,” Toxicology and Applied Pharmacology, Vol. 143, No. 1, 1997, pp. 221-229. doi:10.1006/taap.1996.8070

[23]   K. Satoh, S. Yamada, Y. Koike, Y. Igarashi, S. Toyokuni, T. Kumano, et al., “A 1-Hour Enzyme-Linked Immunosorbent Assay for Quantitation of Acroleinand Hydroxynonenal-Modified Proteins by Epitope-Bound Casein Matrix Method,” Analytical Biochemistry, Vol. 270, No. 2, 1999, pp. 323-328. doi:10.1006/abio.1999.4073

[24]   N. P. Singh, M. T. McCoy, R. R. Tice and E. L. Schneider, “A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells,” Experimental Cell Research, Vol. 175, No. 1, 1988, pp. 184-191. doi:10.1016/0014-4827(88)90265-0

[25]   A. R. Collins, “The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations,” Molecular Biotechnology, Vol. 26, No. 3, 2004, pp. 249-261. doi:10.1385/MB:26:3:249

[26]   M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3

[27]   R. Sawicki, S. P. Singh, A. K. Mondal, H. Benes and P. Zimniak, “Cloning, Expression and Biochemical Characterization of One Epsilon-Class (GST-3) and Ten DeltaClass (GST-1) Glutathione S-Transferases from Drosophila Melanogaster, and Identification of Additional Nine Members of the Epsilon Class,” Biochemical Journal, Vol. 370, Supplement 2, 2003, pp. 661-669. doi:10.1042/BJ20021287

[28]   R. Sharma, B. Ellis and A. Sharma, “Role of Alpha Class Glutathione Transferases (GSTs) in Chemoprevention: GSTA1 and A4 Overexpressing Human Leukemia (HL60) Cells Resist Sulforaphane and Curcumin Induced Toxicity,” Phytotherapy Research, Vol. 25, No. 4, 2011, pp. 563-568. doi:10.1002/ptr.3297

[29]   S. P. Singh, M. Niemczyk, D. Saini, Y. C. Awasthi, L. Zimniak and P. Zimniak, “Role of the Electrophilic Lipid Peroxidation Product 4-Hydroxynonenal in the Development and Maintenance of Obesity in Mice,” Biochemistry, Vol. 47, No. 12, 2008, pp. 3900-3911. doi:10.1021/bi702124u

[30]   K. Uchida, S. Toyokuni, K. Nishikawa, S. Kawakishi, H. Oda, H. Hiai, et al., “Michael Addition-Type 4-Hydroxy-2-Nonenal Adducts in Modified Low-Density Lipoproteins: Markers for Atherosclerosis,” Biochemistry, Vol. 33, No. 41, 1994, pp. 12487-12494. doi:10.1021/bi00207a016

[31]   J. Li, R. Sharma, B. Patrick, A. Sharma, P. V. Jeyabal, P. M. Reddy, et al., “Regulation of CD95 (Fas) Expression and Fas-Mediated Apoptotic Signaling in HLE B-3 Cells by 4-Hydroxynonenal,” Biochemistry, Vol. 45, No. 40, 2006, pp. 12253-12264. doi:10.1021/bi060780+

[32]   A. Sharma, R. Sharma, P. Chaudhary, R. Vatsyayan, V. Pearce, P. V. Jeyabal, et al., “4-Hydroxynonenal Induces p53-Mediated Apoptosis in Retinal Pigment Epithelial Cells,” Archives of Biochemistry and Biophysics, Vol. 480, No. 2, 2008, pp. 85-94. doi:10.1016/j.abb.2008.09.016

[33]   S. J. Riedl and Y. Shi, “Molecular Mechanisms of Caspase Regulation during Apoptosis,” Nature Reviews Molecular Cell Biology, Vol. 5, No. 11, 2004, pp. 897-907. doi:10.1038/nrm1496

[34]   N. N. Danial and S. J. Korsmeyer, “Cell Death: Critical Control Points,” Cell, Vol. 116, No. 2, 2004, pp. 205-219. doi:10.1016/S0092-8674(04)00046-7

[35]   D. W. Fairbairn, P. L. Olive and K. L. O’Neill, “The Comet Assay: A Comprehensive Review,” Mutation Research, Vol. 339, No. 1, 1995, pp. 37-59. doi:10.1016/0165-1110(94)00013-3

[36]   B. P. Sampey, D. L. Carbone, J. A. Doorn, D. A. Drechsel and D. R. Petersen, “4-Hydroxy-2-nonenal Adduction of Extracellular Signal-Regulated Kinase (ERK) and the Inhibition of Hepatocyte ERK-EST-Like Protein-1-Activating Protein-1 Signal Transduction,” Molecular Pharmacology, Vol. 71, No. 3, 2007, pp. 871-883. doi:10.1124/mol.106.029686

[37]   M. F. Favata, K. Y. Horiuchi, E. J. Manos, A. J. Daulerio, D. A. Stradley, W. S. Feeser, et al., “Identification of a Novel Inhibitor of Mitogen-Activated Protein Kinase Kinase,” Journal of Biological Chemistry, Vol. 273, No. 29, 1998, pp. 18623-18632. doi:10.1074/jbc.273.29.18623

[38]   B. L. Bennett, D. T. Sasaki, B. W. Murray, E. C. O’Leary, S. T. Sakata, W. Xu, et al., “SP600125, an Anthrapyrazolone Inhibitor of Jun N-Terminal Kinase,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 24, 2001, pp. 13681-13686. doi:10.1073/pnas.251194298

[39]   C. L. Manthey, S. W. Wang, S. D. Kinney and Z. B. Yao, “SB202190, a Selective Inhibitor of P38 Mitogen-Activated Protein Kinase, is a Powerful Regulator of LPS-Induced mRNAs in Monocytes,” Journal of Leukocyte Biology, Vol. 64, No. 3, 1998, pp. 409-417.

[40]   O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner and J. Corbeil, “Intracellular delivery of proteins with a new lipid-mediated delivery system,” Journal of Biological Chemistry, Vol. 276, No. 37, 2001, pp. 35103-35110. doi:10.1074/jbc.M104920200

[41]   P. Zimniak, S. S. Singhal, S. K. Srivastava, S. Awasthi, R. Sharma, J. B. Hayden, et al., “Estimation of Genomic Complexity, Heterologous Expression, and Enzymatic Characterization of Mouse Glutathione S-transferase mGSTA4-4 (GST 5.7),” Journal of Biological Chemistry, Vol. 269, No. 2, 1994, pp. 992-1000. http://www.ncbi.nlm.nih.gov/pubmed/7904605

[42]   T. Zhao, S. S. Singhal, J. T. Piper, J. Cheng, U. Pandya, J. Clark-Wronski, et al., “The Role of Human Glutathione S-Transferases hGSTA1-1 and hGSTA2-2 in Protection Against Oxidative Stress,” Archives of Biochemistry and Biophysics, Vol. 367, No. 2, 1999, pp. 216-224. doi:10.1006/abbi.1999.1277

[43]   R. Sharma, G. S. Ansari and Y. Awasthi, “Physiological Substrates of Glutathione S-Transferases,” Informa Healthcare, 2006, pp. 179-203.

[44]   M. Dhiman, M. P. Zago, S. Nunez, A. Amoroso, H. Rementeria, P. Dousset, et al., “Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis,” PLos One, Vol. 7, No. 1, 2012, p. e28449. doi:10.1371/journal.pone.0028449

[45]   B. P. Sampey, B. J. Stewart and D. R. Petersen, “Ethanol-Induced Modulation of Hepatocellular Extracellular Signal-Regulated Kinase-1/2 Activity via 4-Hydroxynonenal,” Journal of Biological Chemistry, Vol. 282, No. 3, 2007, pp. 1925-1937. doi:10.1074/jbc.M610602200

[46]   R. S. Harry, L. A. Hiatt, D. W. Kimmel, C. K. Carney, K. C. Halfpenny, D. E. Cliffel, et al., “Metabolic Impact of 4-Hydroxynonenal on Macrophage-Like RAW 264.7 Function and Activation,” Chemical Research in Toxicology, Vol. 25, No. 8, 2012, pp. 643-1651. doi:10.1021/tx3001048

[47]   J. M. C. Gutteridge and B. Halliwell, “The Measurement and Mechanism of Lipid Peroxidation in Biological Systems,” Trends in Biochemical Sciences, Vol. 15, No. 4, 1990, pp. 129-135. doi:10.1016/0968-0004(90)90206-Q

[48]   K. M. Boyle, J. P. Irwin, B. R. Humes and S. W. Runge, “Apoptosis in C3H-10T1/2 Cells: Roles of Intracellular pH, Protein Kinase C, and the Na+/H+ Antiporter,” Journal of Cellular Biochemistry, Vol. 67, No. 2, 1997, pp. 231-240. http://www.ncbi.nlm.nih.gov/pubmed/9328828

[49]   J. E. Chipuk and D. R. Green, “Dissecting p53-Dependent Apoptosis,” Cell Death and Differentiation, Vol. 13, No. 6, 2006, pp. 994-1002. doi:10.1038/sj.cdd.4401908

[50]   R. Simstein, M. Burow, A. Parker, C. Weldon and B. Beckman, “Apoptosis, Chemoresistance, and Breast Cancer: Insights from the MCF-7 Cell Model System,” Experimental Biology and Medicine (Maywood), Vol. 228, No. 9, 2003, pp. 995-1003. http://www.ncbi.nlm.nih.gov/pubmed/14530507

[51]   T. J. Fan, L. H. Han, R. S. Cong and J. Liang, “Caspase Family Proteases and Apoptosis,” Acta Biochimica et Biophysica Sinica (Shanghai), Vol. 37, No. 11, 2005, pp. 719-727. http://www.ncbi.nlm.nih.gov/pubmed/16270150

[52]   S. Fulda and K. M. Debatin, “Apoptosis Signaling in Tumor Therapy,” Annals of the New York Academy of Sciences, Vol. 1028, No. 1, 2004, pp. 150-156. doi:10.1196/annals.1322.016

[53]   S. Fulda and K. M. Debatin, “Extrinsic versus Intrinsic Apoptosis Pathways in Anticancer Chemotherapy,” Oncogene, Vol. 25, No. 34, 2006, pp. 4798-4811. doi:10.1038/sj.onc.1209608

[54]   E. C. Cheung and R. S. Slack, “Emerging Role for ERK as a Key Regulator of Neuronal Apoptosis,” Science’s STKE, Vol. 2004, No. 251, 2004, p. pe45. doi:10.1126/stke.2512004pe45

[55]   J. Liu and A. Lin, “Role of JNK Activation in Apoptosis: A Double-Edged Sword,” Cell Research, Vol. 15, No. 1, 2005, pp. 36-42. doi:10.1038/sj.cr.7290262

[56]   M. Castro-Caldas, A. N. Carvalho, E. Rodrigues, C. Henderson, C. R. Wolf and M. J. Gama, “Glutathione S-Transferase pi Mediates MPTP-Induced c-Jun N-Terminal Kinase Activation in the Nigrostriatal Pathway,” Molecular Neurobiology, Vol. 45, No. 3, 2012, pp. 466-477. doi:10.1007/s12035-012-8266-9

[57]   V. Adler, Z. Yin, S. Y. Fuchs, M. Benezra, L. Rosario, K. D. Tew, et al., “Regulation of JNK Signaling by GSTp,” EMBO Journal, Vol. 18, No. 5, 1999, pp. 1321-1334. doi:10.1093/emboj/18.5.1321

[58]   Z. Yin, V. N. Ivanov, H. Habelhah, K. Tew and Z. Ronai, “Glutathione S-Transferase p Elicits Protection against H2O2-Induced Cell Death via Coordinated Regulation of Stress Kinases,” Cancer Research, Vol. 60, No. 15, 2000, pp. 4053-4057. http://www.ncbi.nlm.nih.gov/pubmed/10945608

[59]   K. Ryoo, S. H. Huh, Y. H. Lee, K. W. Yoon, S. G. Cho and E. J. Choi, “Negative Regulation of MEKK1-Induced Signaling by Glutathione S-Transferase Mu,” Journal of Biological Chemistry, Vol. 279, No. 42, 2004, pp. 43589-43594. doi:10.1074/jbc.M404359200

[60]   S. G. Cho, Y. H. Lee, H. S. Park, K. Ryoo, K. W. Kang, J. Park, et al., “Glutathione S-Transferase Mu Modulates the Stress-Activated Signals by Suppressing Apoptosis Signal-Regulating Kinase 1,” Journal of Biological Che-mistry, Vol. 276, No. 16, 2001, pp. 12749-12755. doi:10.1074/jbc.M005561200

[61]   S. Dorion, H. Lambert and J. Landry, “Activation of the p38 Signaling Pathway by Heat Shock Involves the Dis-sociation of Glutathione S-Transferase Mu from Ask1,” Journal of Biological Chemistry, Vol. 277, No. 34, 2002, pp. 30792-30797. doi:10.1074/jbc.M203642200

[62]   P. Bhattacharya and A. F. Keating, “Protective Role for Ovarian Glutathione S-Transferase Isoform pi during 7, 12-Dimethylbenz[a]anthracene-Induced Ovotoxicity,” Toxicology and Applied Pharmacology, Vol. 260, No. 2, 2012, pp. 201-208. doi:10.1016/j.taap.2012.02.014

[63]   I. Dimitrova, G. G. Toby, E. Tili, R. Strich, S. C. Kam-pranis and A. M. Makris, “Expression of Bax in Yeast Affects Not Only the Mitochondria but Also Vacuolar Integrity and Intracellular Protein Traffic,” FEBS Letters, Vol. 566, No. 1, 2004, pp. 100-104. doi:10.1016/j.febslet.2004.04.012

[64]   S. C. Kampranis, R. Damianova, M. Atallah, G. Toby, G. Kondi, P. N. Tsichlis, et al., “A Novel Plant Glutathione S-Transferase/Peroxidase Suppresses Bax Lethality in Yeast,” Journal of Biological Chemistry, Vol. 275, No. 38, 2000, pp. 29207-29216. doi:10.1074/jbc.M002359200

[65]   K. G. Kilili, N. Atanassova, A. Vardanyan, N. Clatot, K. Al-Sabarna, P. N. Kanellopoulos, et al., “Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress,” Journal of Biological Chemistry, Vol. 279, No. 23, 2004, pp. 24540-24551. doi:10.1074/jbc.M309882200

 
 
Top