Solving a Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo-Spectral Method

Yin Yang^{*}

Show more

References

[1] H. H. Sun, B. Onaral and Y. Tsao, “Application of Positive Reality Principle to Metal Electrode Linear Polarization Phenomena,” IEEE Transactions on Biomedical Engineering, Vol. 31, No. 10, 1984, pp. 664-674.
doi:10.1109/TBME.1984.325317

[2] H. H. Sun, A. A. Abdelwahab and B. Onaral, “Linear Approximation of Transfer Function with a Pole of Fractional Order,” IEEE Transactions on Automatic Control, Vol. 29, No. 5, 1984, pp. 441-444.
doi:10.1109/TAC.1984.1103551

[3] C. Li and G. Chen, “Chaos and Hyperchaos in the Fractional-Order Rossle Equations,” Physica A, Vol. 341, No. 1, 2004, pp. 55-61. doi:10.1016/j.physa.2004.04.113

[4] N. H. Sweilam, M. M. Khader and R. F. AlffBar, “Numerical Studies for a Multi-Order Fractional Differential Equation,” Physics Letter A, Vol. 371, No. 1-2, 2007, pp. 26-33. doi:10.1016/j.physleta.2007.06.016

[5] V. S. Erturk, S. Momani and Z. Odibat, “Application of Generalized Differential Transform Method to Multi-Order Fractional Differential Equations,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 8, 2008, pp. 1642-1654.
doi:10.1016/j.cnsns.2007.02.006

[6] Z. Odibat and S. Momani, “Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order,” Chaos, Solitons and Fractals, Vol. 36, No. 1, 2008, pp. 167-174.
doi:10.1016/j.chaos.2006.06.041

[7] Y. Chen and T. Tang, “Convergence Analysis for the Jacobi Collocation Methods to Volterra Integral Equations with a Weakly Singular Kernel,” Mathematics of Computation, Vol. 79, No. 269, 2010, pp. 147-167.
doi:10.1090/S0025-5718-09-02269-8

[8] X. Li and C. Xu, “A Space-Time Spectral Method for the Time Fractional Diffusion Equation,” SIAM Journal on Numerical Analysis, Vol. 47, No. 3, 2009, pp. 2108-2131. doi:10.1137/080718942

[9] Y. Wei and Y. Chen, “Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations,” Numerical Mathematics: Theory, Methods and Applications, Vol. 4, No. 4, 2011, pp. 339-358.

[10] Y. Li, “Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 9, 2010, pp. 2284-2292.
doi:10.1016/j.cnsns.2009.09.020

[11] V. Gejji and H. Jafari, “Solving a Multi-Order Fractional Differential Equation Using Adomian Decomposition,” Applied Mathematics and Computation, Vol. 189, No. 1, 2007, pp. 541-548.

[12] S. Yang, A. Xiao and H. Su, “Convergence of the Variational Iteration Method for Solving Multi-Order Fractional Differential Equations,” Computers and Mathematics with Applications, Vol. 60, No. 10, 2010, pp. 2871-2879. doi:10.1016/j.camwa.2010.09.044

[13] A. El-Mesiry, A. El-Sayed and H. El-Saka, “Numerical Methods for Multi-Term Fractional (Arbitrary) Orders Differential Equations,” Computational and Applied Mathematics, Vol. 160, No. 3, 2005, pp. 683-699.
doi:10.1016/j.amc.2003.11.026

[14] B. Baeumer, M. Kovcs and M. M. Meerschaer, “Numerical Solutions for Fractional Reaction-Diffusion Equations,” Computers and Mathematics with Applications, Vol. 55, No. 10, 2008, pp. 2212-2226.
doi:10.1016/j.camwa.2007.11.012

[15] K. Diethelm and N. Ford, “Multi-Order Fractional Differential Equations and Their Numerical Solution,” Applied Mathematics and Computation, Vol. 154, No. 3, 2004, pp. 621-640. doi:10.1016/S0096-3003(03)00739-2